
CHAPTER 2 1

© Copyright 1999 by Deitel & Associates, Inc. All Rights Reserved.

2

1 // Fig. 2.1: Welcome1.java
2 // A first program in Java
3
4 public class Welcome1 {
5 public static void main(String args[])
6 {
7 System.out.println("Welcome to Java Programming!");
8 }
9 }

Fig. 2.1 A first program in Java.

Welcome to Java Programming!

2 CHAPTER 2

© Copyright 1999 by Deitel & Associates, Inc. All Rights Reserved.

Fig. 2.2 Executing the Welcome1 application in a Microsoft Windows MS-DOS
Prompt.

CHAPTER 2 3

© Copyright 1999 by Deitel & Associates, Inc. All Rights Reserved.

1 // Fig. 2.3: Welcome2.java
2 // Printing a line with multiple statements
3
4 public class Welcome2 {
5 public static void main(String args[])
6 {
7 System.out.print("Welcome to ");
8 System.out.println("Java Programming!");
9 }

10 }

Fig. 2.3 Printing on one line with separate statements.

Welcome to Java Programming!

4 CHAPTER 2

© Copyright 1999 by Deitel & Associates, Inc. All Rights Reserved.

1 // Fig. 2.4: Welcome3.java
2 // Printing multiple lines with a single statement
3
4 public class Welcome3 {
5 public static void main(String args[])
6 {
7 System.out.println("Welcome\nto\nJava\nProgramming!");
8 }
9 }

Fig. 2.4 Printing on multiple lines with a single statement.

Welcome
to
Java
Programming!

CHAPTER 2 5

© Copyright 1999 by Deitel & Associates, Inc. All Rights Reserved.

Escape sequence Description

\n Newline. Position the screen cursor to the beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next tab stop.

\r Carriage return. Position the screen cursor to the beginning of the cur-
rent line; do not advance to the next line. Any characters output after
the carriage return overwrite the previous characters output on that line.

\\ Backslash. Used to print a backslash character.

\" Double quote. Used to print a double quote character. For example,

System.out.println("\"in quotes\"");

displays

"in quotes"

Fig. 2.5 Some common escape sequences.

6 CHAPTER 2

© Copyright 1999 by Deitel & Associates, Inc. All Rights Reserved.

1 // Fig. 2.6: Welcome4.java
2 // Printing multiple lines in a dialog box
3 import javax.swing.JOptionPane; // import class JOptionPane
4
5 public class Welcome4 {
6 public static void main(String args[])
7 {
8 JOptionPane.showMessageDialog(
9 null, "Welcome\nto\nJava\nProgramming!");

10
11 System.exit(0); // terminate the program
12 }
13 }

Fig. 2.6 Displaying multiple lines in a dialog box.

CHAPTER 2 7

© Copyright 1999 by Deitel & Associates, Inc. All Rights Reserved.

Fig. 2.7 A sample Netscape Navigator window with GUI components.

menu menu barbutton label text field

8 CHAPTER 2

© Copyright 1999 by Deitel & Associates, Inc. All Rights Reserved.

1 // Fig. 2.8: Addition.java
2 // An addition program
3
4 import javax.swing.JOptionPane; // import class JOptionPane
5
6 public class Addition {
7 public static void main(String args[])
8 {
9 String firstNumber, // first string entered by user

10 secondNumber; // second string entered by user
11 int number1, // first number to add
12 number2, // second number to add
13 sum; // sum of number1 and number2
14
15 // read in first number from user as a string
16 firstNumber =
17 JOptionPane.showInputDialog("Enter first integer");
18
19 // read in second number from user as a string
20 secondNumber =
21 JOptionPane.showInputDialog("Enter second integer");
22
23 // convert numbers from type String to type int
24 number1 = Integer.parseInt(firstNumber);
25 number2 = Integer.parseInt(secondNumber);
26
27 // add the numbers
28 sum = number1 + number2;
29
30 // display the results
31 JOptionPane.showMessageDialog(
32 null, "The sum is " + sum, "Results",
33 JOptionPane.PLAIN_MESSAGE);
34
35 System.exit(0); // terminate the program
36 }
37 }

Fig. 2.8 An addition program “in action.”

CHAPTER 2 9

© Copyright 1999 by Deitel & Associates, Inc. All Rights Reserved.

Message dialog type Icon Description

JOptionPane.ERROR_MESSAGE Displays a dialog that indicates an error
to the application user.

JOptionPane.INFORMATION_MESSAGE Displays a dialog with an informational
message to the application user—the
user can simply dismiss the dialog.

JOptionPane.WARNING_MESSAGE Displays a dialog that warns the applica-
tion user of a potential problem.

JOptionPane.QUESTION_MESSAGE Displays a dialog that poses a question
to the application user. This normally
requires a response such as clicking a
Yes or No button.

JOptionPane.PLAIN_MESSAGE no
icon

Displays a dialog that simply contains a
message with no icon.

Fig. 2.9 JOptionPane constants for message dialogs .

10 CHAPTER 2

© Copyright 1999 by Deitel & Associates, Inc. All Rights Reserved.

Fig. 2.10 Memory location showing the name and value of variable number1.

number1 45

CHAPTER 2 11

© Copyright 1999 by Deitel & Associates, Inc. All Rights Reserved.

Fig. 2.11 Memory locations after values for variables number1 and number2
have been input.

number1 45

number2 72

12 CHAPTER 2

© Copyright 1999 by Deitel & Associates, Inc. All Rights Reserved.

Fig. 2.12 Memory locations after a calculation.

number1 45

number2 72

sum 117

CHAPTER 2 13

© Copyright 1999 by Deitel & Associates, Inc. All Rights Reserved.

Java operation Arithmetic operator Algebraic expression Java expression

Addition + f + 7 f + 7

Subtraction – p – c p - c

Multiplication * bm b * m

Division /
x / y or or x ÷ y

x / y

Modulus % r mod s r % s

Fig. 2.13 Arithmetic operators.

x
y
--

14 CHAPTER 2

© Copyright 1999 by Deitel & Associates, Inc. All Rights Reserved.

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the
expression in the innermost pair is evaluated first. If
there are several pairs of parentheses “on the same
level” (i.e., not nested), they are evaluated left to right.

*, / or % Multiplication
Division
Modulus

Evaluated second. If there are several, they are evalu-
ated left to right.

+ or - Addition
Subtraction

Evaluated last. If there are several, they are evaluated
left to right.

Fig. 2.14 Precedence of arithmetic operators.

CHAPTER 2 15

© Copyright 1999 by Deitel & Associates, Inc. All Rights Reserved.

Fig. 2.15 Order in which a second-degree polynomial is evaluated.

y = 2 * 5 * 5 + 3 * 5 + 7;

 2 * 5 is 10 (Leftmost multiplication)

y = 10 * 5 + 3 * 5 + 7;

 10 * 5 is 50 (Leftmost multiplication)

y = 50 + 3 * 5 + 7;

 3 * 5 is 15 (Multiplication before addition)

y = 50 + 15 + 7;

 50 + 15 is 65 (Leftmost addition)

y = 65 + 7;

 65 + 7 is 72 (Last addition)

y = 72; (Last operation—assignment)

Step 1.

Step 2.

Step 5.

Step 3.

Step 4.

Step 6.

16 CHAPTER 2

© Copyright 1999 by Deitel & Associates, Inc. All Rights Reserved.

Standard algebraic
equality operator or
relational operator

Java equality
or relational
operator

Example
of Java
condition

Meaning of
Java condition

Equality operators

= == x == y x is equal to y

≠ != x != y x is not equal to y

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Fig. 2.16 Equality and relational operators.

CHAPTER 2 17

© Copyright 1999 by Deitel & Associates, Inc. All Rights Reserved.

1 // Fig. 2.17: Comparison.java
2 // Using if statements, relational operators
3 // and equality operators
4
5 import javax.swing.JOptionPane;
6
7 public class Comparison {
8 public static void main(String args[])
9 {

10 String firstNumber, // first string entered by user
11 secondNumber, // second string entered by user
12 result; // a string containing the output
13 int number1, // first number to compare
14 number2; // second number to compare
15
16 // read first number from user as a string
17 firstNumber =
18 JOptionPane.showInputDialog("Enter first integer:");
19
20 // read second number from user as a string
21 secondNumber =
22 JOptionPane.showInputDialog("Enter second integer:");
23
24 // convert numbers from type String to type int
25 number1 = Integer.parseInt(firstNumber);
26 number2 = Integer.parseInt(secondNumber);
27
28 // initialize result to the empty string
29 result = "";
30
31 if (number1 == number2)
32 result = result + number1 + " == " + number2;
33
34 if (number1 != number2)
35 result = result + number1 + " != " + number2;
36
37 if (number1 < number2)
38 result = result + "\n" + number1 + " < " + number2;
39
40 if (number1 > number2)
41 result = result + "\n" + number1 + " > " + number2;
42
43 if (number1 <= number2)
44 result = result + "\n" + number1 + " <= " + number2;
45
46 if (number1 >= number2)
47 result = result + "\n" + number1 + " >= " + number2;
48

Fig. 2.17 Using equality and relational operators (part 1 of 2).

18 CHAPTER 2

© Copyright 1999 by Deitel & Associates, Inc. All Rights Reserved.

49 // Display results
50 JOptionPane.showMessageDialog(
51 null, result, "Comparison Results",
52 JOptionPane.INFORMATION_MESSAGE);
53
54 System.exit(0);
55 }
56 }

Fig. 2.17 Using equality and relational operators (part 2 of 2).

CHAPTER 2 19

© Copyright 1999 by Deitel & Associates, Inc. All Rights Reserved.

Operators Associativity Type

() left to right parentheses

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

= right to left assignment

Fig. 2.18 Precedence and associativity of the operators discussed so far.

	Figure 2.1
	Figure 2.2
	Figure 2.3
	Figure 2.4
	Figure 2.5
	Figure 2.6
	Figure 2.7
	Figure 2.8
	Figure 2.9
	Figure 2.10
	Figure 2.11
	Figure 2.12
	Figure 2.13
	Figure 2.14
	Figure 2.15
	Figure 2.16
	Figure 2.17 part 1
	FIgure 2.17 part 2
	Figure 2.18

