
Implementing EcoTruck in Functional Languages

By
Nikolaos Bezirgiannis

Supervisor

Dr I. Sakellariou

Supervisor

Dr K. Margaritis

Bachelor Thesis

Dept. of Applied Informatics,
University of Macedonia

January 25, 2011

Abstract

In this thesis, we present the motivation, design and implementation of a Recycling Man-

agement software platform. Potential users of this platform include companies and individ-

uals that wish to dispose their idle paper quantity for recycling. The goal of the application

is to enhance the collection of recyclable materials by making it faster, more efficient and

environmental-friendly. The recycling trucks construct and follow optimal drive paths,

that have the effect of lowering fuel consumption and transportation costs while raising

the overall service throughput.

The concept is based on a previous work, entitled “EcoTruck”, that took part in the

Greek National Software Contest xiriafia.gr and won the 1st prize. By pairing MultiAgent

theory with modern concurrent and distributed technologies, we provide an improved re-

implementation of that platform.

Contents

1 Introduction 4

1.1 Environmental Terms . 4

1.1.1 Recycling . 4

1.1.2 Reusing . 6

1.2 Problem . 7

1.3 Motivation . 8

1.3.1 Room for improvement . 9

1.3.2 Technological advance . 9

1.3.3 Approach . 10

2 Multi-agent Systems 11

2.1 Intelligent Agents . 11

2.1.1 What is an Agent . 11

2.1.2 Agent Environments . 12

2.2 MultiAgent Systems . 13

2.2.1 Understanding . 14

2.2.2 Communication . 14

2.2.3 Cooperation . 15

2.2.4 Coordination . 16

2.3 The Foundation for Intelligent, Physical Agents 17

2.4 Conclusion . 17

3 Erlang Programming 18

3.1 Introduction . 18

3.1.1 History . 19

3.1.2 Describing the Language . 19

1

3.1.3 Special Features . 21

3.1.4 Case Studies . 24

3.2 The Basics . 25

3.2.1 Datatypes . 25

3.2.2 Pattern Matching . 30

3.2.3 Functions . 31

3.2.4 Modules . 32

3.3 Sequential Erlang . 32

3.3.1 Conditional Constructs . 33

3.3.2 Guards . 33

3.3.3 Tail-recursion . 34

3.4 Concurrent Programming . 35

3.4.1 Process . 35

3.4.2 Message Passing . 36

3.4.3 Timeouts . 37

3.4.4 Registered Processes . 38

3.4.5 Concurrency Pitfalls . 38

3.5 Error Handling . 39

3.6 Distributed Erlang . 41

3.6.1 Nodes . 41

3.6.2 Communication . 42

3.6.3 Security . 42

3.6.4 rpc . 42

3.6.5 epmd . 43

3.7 Introduction to OTP . 43

3.7.1 Server . 43

3.7.2 FSM . 45

3.7.3 Supervisor . 46

3.7.4 Application . 46

3.8 Conclusion . 47

4 System Analysis 48

4.1 Overview . 48

4.2 Modeling . 50

4.3 Specifications . 51

2

4.4 Features . 52

4.5 Design . 53

4.5.1 Registry Service . 54

4.5.2 Recycling Service . 55

4.6 Implementation . 56

4.6.1 DF . 56

4.6.2 Customer . 58

4.6.3 Truck . 61

4.7 Testing . 65

5 Conclusions 66

5.1 Future Work . 66

3

Chapter 1

Introduction

1.1 Environmental Terms

The protection and preservation of the natural environment has evolved into a major

problem that modern man has to deal with. The main cause of the problem is the rapid

population growth, that led us to continuously searching for and using more and more

natural resources. This situation takes place in such a high pace, that nature finds it

hard to replenish in a timely manner the vast amounts of the natural resources that are

consumed.

Two basic methods to treat this problem is the Recycling and Reusing of products.

1.1.1 Recycling

The term Recycling refers to the processing of used materials so as to transform them once

again into useful materials that can be reinserted to the production cycle. It is the third

component of the well-known 3R hierarchy “Reduce, Reuse, Recycle”.

Recycling aims to:

• Help to reduce pollution caused by waste.

• Require much less energy that we would otherwise need to build fresh products from

raw materials.

4

Recycling can:

• Decrease the financial expenditure on building products. The use of raw materials

in the production normally costs much more than using recycled materials.

• Preserve natural resources for future generations.

Recycling is an ancient practice for the preservation of the natural environment. There

are even records in writings of Plato around 400 B.C.. However, this method is finding

application only in the last 40 years. The reason for this is the huge industrial growth that

we meet in our days.

The industry trying to satisfy the needs of the modern man has increased the offer

of their products binding however a big part of the natural production factors. The fear

of depletion of these factors is the main reason for the widespread adoption of recycling

practices.

Greece, however, does not follow this global trending. According to statistical evidence,

our country is placed in the last position of the European ranking on environmental and

recycling issues. This is due to the fact that recycling can not be thought as a simple

process. It entails proper environmental culture, public awareness and financial investments

for acquiring special equipment and using latest technologies.

There is a great variety of recyclable materials. This includes materials with widespread

use such as metal, glass, paper and plastic. In practice, only a few of them are actually

recycled because in many cases there is no significant benefit from recycling them. This

thesis is concerned exclusively with paper recycling, because the material exhibits remark-

able gain by recycling it and there are still margins for application.

Paper Recycling

Because of the huge amount of paper used daily, important ecosystems are threatened by

its consumption. Forests that required over 1000 years to grow can be vanished in just 12

minutes. The excessive logging does not only create a sad image; it ruins the fertility of

the ground and has a negative impact on the water cycle.

The environmental damage does not stop with the logging of the trees. To turn the

paper into something useful, the factories process the logs heavily. Often, this process

results to considerable pollution of the aquatic ecosystems and also of the atmospheric air.

5

Thus, if we lessen the unnecessary paper consumption and improve our recycling pro-

grams we can ease the pressure on the forests, which can allow the environmentally correct

management of the forest and will prevent the devastation of our ecosystems.

In Greece, paper consumption has surpassed the 800,000 tons per year. Of these 800,000

tons, about 300,000 tons of paper are thrown each year, which their production costs

translates into:

• 12 million square metres of forest

• 100 million cubic water (equal to the consumption of Attica region for 100 days)

• 1.5 to 2 billion kilowatts per hour (equal to the energy needed to power 1 million

households for a period of 4 months)

Recent studies carried out have shown that recycling of 1 ton of paper will:

• Prevent the logging of 17 trees

• Save 30 cubic metres of water

• Consume 2,700 kilowatts less for the production of paper products

• Reduce by 73% of the atmospheric pollution

• Spare 320 litres of gasoline

Note: The numbers [11] above are used as information data for the software application

that is presented here.

1.1.2 Reusing

Reusing is the process of exchanging useful products with the goal of saving up resources,

money and time. In contrast with recycling these products do not get any processing.

This practice is not very well-known compared to recycling, but can contribute enough

to the overall performance of the goal, as the difficult part of reprocessing is removed.

6

Paper Reusing

Specifically for paper, nature puts some constraints on the viability of the reusing methods.

With further and further reprocessing, the paper material wears out. Because of its reduced

quality, the recycled paper is found in low-value products (e.g. cartons, wrappings). Also,

the paper products are specially built in such a way that are intended for specific customers

and include logos or symbols making these imprinted products hard to trade.

1.2 Problem

We will examine only recycling and not the part of reusing, not because we find it unim-

portant, but because of the small application and attention it receives in Greece.

We can track many deficiencies in the management of the procedure of paper recy-

cling by municipals all over the country. Until now, the only method used by authorities

for recycling paper carton boxes involves telephone notifications. Generally, this method

includes the following steps:

1. Big companies and shopping centres inform by telephone the service qualified for this

task

2. After much communication a municipal truck picks up the paper quantity

As we can observe the service mechanism applied is not well-thought-out and in many

situations can be cumbersome.

Particularly, some of the drawbacks are:

• The notification process is not automated.

The truck must continuously be in touch with the municipal office or the companies-

clients for clarifications and further details or any changes that have to be made.

This should take place in a timely fashion, nearly real-time. Also we could speed up

the communication if every user of the system handles the connections with other

users in parallel.

But a telephone communication can be neither constantly online nor concurrent. The

truck can handle only one client at a time. Consequently the truck will lag in serving

companies and fail in a large number of them.

7

• The truck does not follow a certain plan.

As a result its actions will not be coordinated. Efficient scheduling of these actions

is arbitrary and does not follow any pattern.

• There is no cooperation between the trucks.

The trucks operate autonomously. The service office does not allow “team-play”

between the trucks so as to achieve their common goals.

• The trucks operate inefficiently.

There is no search for the shortest path to a client, because the truck does not know

about all available routes. The very important traffic factor is not counted in.

• Recycling bins are not a “silver bullet”.

Of course the municipals have taken care of putting recycling bins in various places

inside the city with the goal of speeding up the recycling process and making it more

widely used. However the problem remains mainly for two reasons:

1. The companies have a vast amount of paper to recycle, which does not normally

fit into bins.

2. The bins are bulky.

The bins reduce the space for parking lots with any of the consequences that

has. Also bins don’t scale up. Just adding more bins does not solve the problem

and it could make it worse.

• There is no public awareness on environmental issues and mainly on the recycling

methods.

People think that recycling is a difficult and time-consuming procedure, because it

demands collecting and sorting the materials in the house and finding a nearby bin

to throw them in.

1.3 Motivation

This thesis tries to present an alternative method of managing paper material, to implement

it in an efficient application and to analyze the results and its capabilities.

8

1.3.1 Room for improvement

• Truck will follow a plan.

Each truck will construct his own plan in order to sort his intended actions. The

plan will be dynamic; that means the truck can re-order its steps in real-time. The

long term goal is the overall improvement of the entire system.

• Timetables for collecting and transferring are constructed.

Given the traffic factor inside the city roads, the trucks could create and update live

their timetables in order to select each and every time the shortest path to the client.

In this way, waiting time to collect the quantity can decrease dramatically and there

is a speedup in client dispatching.

• The heavy computing parts become automated.

The planning and scheduling are problem hard enough to be solved by a human in a

timely manner and in most cases these solutions are inefficient.

There is no need anymore for human intervention for the communication, the man-

agement, the construction of the plans and the scheduling of the trucks. All these

are being taken care of by the application.

The result of this will be faster servicing and throughput increase, because the system

can handle more clients and new trucks will be able to participate in the overall

process.

• The service centre becomes unnecessary.

Communication will take place directly from a user to another user of the system

without the need for a “middleman” (i.e. the municipal office). This has the negative

effect of increasing the messages exchanged between the users, but in this way the

system can be more fault-tolerant. A possible failure in the service centre will not

bring down the whole system and moreover the running and queued jobs will still

execute.

1.3.2 Technological advance

The recent rapid progress of computers and networks has created opportunities for new

methods of work and communication. Furthermore their universal dominance have made

the use of these new technologies more affordable.

9

This is the main reason which turns the idea into an actual application. Nowadays,

it is easy enough to install and operate a computer system in a truck environment. Also

the cost of a wireless connection has reached such a low level that makes the whole idea

feasible.

1.3.3 Approach

The multiagent approach seems to be ideal for attacking the recycling management prob-

lem. In a nutshell, clients as well as trucks take the form of agents that communicate

continuously. The coexistence and the coordination of agents for achieving their common

goals creates a multiagent system. The theory behind multiagents is discussed later on.

Our multiagent system is implemented in Erlang, a specifically designed language for

describing distributed systems. The features and the components of the Erlang language,

as well as the Erlang OTP platform, which facilitates in writing such complex systems, are

described in detail in the 3rd chapter.

10

Chapter 2

Multi-agent Systems

2.1 Intelligent Agents

2.1.1 What is an Agent

There exist many different interpretations of the term “agent”, depending on which context

it is used in. The general meaning of the word encompasses a behaviour of action; an agent

is an entity (it could as well be a person), who has been given the authority to act on behalf

of another or provide a service.

In Artificial Intelligence, the concept of the agent plays a central role. For this reason,

there is an ongoing fight on which interpretation of the term better describes its purpose.

The truth is, that all these explanations can be both wrong and right at the same time;

it depends on what capabilities you want to give to your agent. We aspire to the simple

notion of the Physical Agent: an entity which percepts its environment through sensors

and acts upon that environment through actuators.

We should establish the characteristics we think are important to better conceptualize

the essence of the intelligent agent:

Autonomy

Normally, what we do is to build an agent and assign it a series of tasks that we want

it to accomplish. However, we do not instruct it on what steps (actions) it should

take to fulfill our goals. In this sense, the agent is autonomous, for the reason that

it thinks and decides how it must act, so as to better carry out our assignments.

11

Rationality

When the agent thinks and acts in such a way so as to better achieve its goals, we

say that it is being rational.

Proactivity

The agent should be proactive, that means, in certain cases it should in advance take

actions to encounter possible future situations happening. It should be able to make

“the first move” to come closer to its goals and to bring itself in a better position in

the future.

Reactivity

Some environments are in constant flux and have a very dynamic nature. Agents

that operate in these environments should behave the same; they should modify

their objectives in a similar fashion to the changes happening in the environment.

These changes could possibly mark a goal as no more valid or even unattainable.

The agent should realize this and dynamically modify its future tasks.

Social Ability

The agents should exhibit the ability of interacting with other thinking entities (being

this a human person or another agent) so as to come closer to fulfilling their own

goals.

2.1.2 Agent Environments

What follows is a short categorization [13] of the properties of environments.

Fully observable vs partially observable

If the sensors of an agent can fully capture the state of the environment at any

particular time, we say that the environment is fully observable. On the other hand,

in a partially observable environment, some of its attributes cannot be noticed and

the agent should keep an internal state containing previous attributes that it has

sensed.

Deterministic vs stochastic

If the next state of the environment can be fully determined just by applying the

action onto the current state, then the environment is said to be deterministic; in

any other case, where there are “hidden” factors that affect the environment then we

should call it stochastic.

12

Episodic vs sequential

In an episodic environment, the agent picks its next action based not on previous

actions or older states but just on the current episode. In a sequential environment,

the choice of the next action is influenced from former actions and experiences.

Static vs dynamic

If the environment does not change during the time the agent takes to choose its next

action, then it is called static. Otherwise, if time can alter the environment then we

say it is dynamic.

Discrete vs continuous

The environment that has a finite number of states is a discrete environment. How-

ever, if the state of the environment has attributes that are expressed in continuous

variables, then the environment is in that way called continuous.

Single agent vs multiagent

If an agent only perceives the environmental objects and acts upon them, then this

environment is a Single-Agent system. On the other hand, if it interacts with other

agents by competing with them or cooperating, then we have a Multi-Agent system.

2.2 MultiAgent Systems

A MultiAgent System (MAS), as we said earlier, is composed of a number of different

agents that continuously interact with each other, possibly through messages. MASs are

basically trying to attack particular problems that would otherwise by very difficult or

even impossible to solve.

MultiAgent Systems should impose the following characteristics [16] :

• Every agent has only a local view of its environment and normally communicates

with other agents to obtain a “bigger picture of the world”.

• There exists no central administrative control system.

• Information is scattered among agents and data are decentralized.

• Computation, and thus communication, is asynchronous.

• Key factor in all MASs is time. The communication between the agents must be

done in real-time and the overall performance of the system is time-sensitive.

13

2.2.1 Understanding

Agents sense their environment, then try to understand its surroundings and environmental

objects and finally act upon them. An agent can give a somewhat different meaning to

the same exact object compared to another agent. And that is all fine, until we go to

implement a MAS.

Agents living inside a MAS interact wit each other by exchanging their views and beliefs

on objects that surround them. We have to be sure that agents give the correct and precise

meaning in every part of their acquired knowledge. This is achieved by defining ontologies.

An ontology is a formal set of terms that describe the knowledge about a particular

domain. Every new term is defined by writing down a structural composition of older

terms. In this way, we introduce new entities by abstracting over past definitions. We can

be sure that the agents who share the same ontology, will interpret these newly defined

terms in an identical manner.

Some ontology languages to write down our ontology in, are the Web Ontology Lan-

guage (OWL) and the Knowledge Interchange Format (KIF). Another way to express our

ontology is to define custom XML documents, although that would most likely be a very

strenuous effort, because it requires a low-level coding style and we lose the ability of

reusing previously defined ontological terms.

2.2.2 Communication

Now that we have concluded on how the agents will uniformly express their knowledge, we

must take a look on how the communication between them will be realized.

We can model the agent communication infrastructure around the well-established

Speech Act Theory. This theory, developed by the philosopher John Austin, can help

us analyze utterances from the perspective of their function, rather than their form [14]

. Austin described three distinct types of acts based upon their functions: locutionary,

illocutionary and perlocutionary acts.

In this sense, words are not just “inanimate” objects, but their utterance can designate

action. In agent communication we can define some performative verbs, a list of common

words that agents will exchange through messages to describe their actions.

As we said before, agents that form a MAS interact with each other using messages.

The messages must be written in a mutually understood language, otherwise an agent

would not be able to interpret the message’s contents. There have been proposed several

14

Agent Communication Languages (ACL), though only two of them are really well-known:

the KQML and the FIPA-ACL.

What follows is an example of a REQUEST performative, written in the FIPA-ACL

language. Its syntax resembles Lisp, because it uses S-expressions to represent data:

(request

:sender (:name customer1@debianlap:8080)

:receiver (:name df@debianlap:8000)

:ontology recycling-ontology

:language FIPA-SL

:protocol inform

:content

(update-position (:lat 40.625606) (:lng 22.960431)))

2.2.3 Cooperation

The MAS agents exchange messages with each other, not because they are in a “mood for

chatting”, but with the goal to cooperatively carry out some work. We should make clear

that, in a cooperative MultiAgent environment, the agents of the system do not necessarily

have to share the same goal. Problems are decomposed to smaller subproblems and then

each subproblem is delegated to an agent to solve it. The subsolutions are then synthesized

to one whole solution. This activity is called task sharing.

Task sharing can be a straightforward process, if the agents given exhibit quite identical

capabilities. Then, we can assign tasks to them in no particular order. However, in most

cases, the agents are very different to each other, so we have to specify for each task at

hand, an agent we believe is appropriate to accomplish it.

This task allocation can be achieved by a higher-level task sharing protocol, called Con-

tract Net Protocol (CNP). This protocol defines an interaction pattern where an initiator

agent announces some task it wants to get done, the other agents respond with an offer

(most likely a cost or time to fulfill the task) and finally the initiator delegates the task to

the agent(s) with the best offer.

What follows is a graphical representation of the CNP and after that a detailed de-

scription of the protocol:

The Initiator agent sends Call-For-Proposal (CFP) messages to the participants of this

negotiations. The participants respond with either a PROPOSE, including the bidding

offer, or a REFUSE, stating possibly the reason for the refusal.

15

Figure 2.1: Message Sequence Diagram of a CNP Interaction [7]

Then, the initiator ranks the bids and awards the agent(s) with the best bid, an AC-

CEPT_PROPOSAL. The rest of agents will receive a REJECT_PROPOSAL performa-

tive.

The accepted agents are committed to carry out the job that were delegated to them

by the initiator. When they finish they have to announce to the initiator that they have

completed the task sending back an INFORM message with any necessary extra informa-

tion. If the accepted participants fail to perform the task, they could issue a FAILURE

to the initiator and then the initiator will decide, how it should handle this problematic

situation.

2.2.4 Coordination

Besides committing to a specific task, a MAS agent should also commit to the joint goal

of the MultiAgent system. That is, it should give its best effort to fulfill its assigned task,

16

without dishonoring the overall aim of the MAS.

Committed tasks can possibly conflict with each other and in a situation like this, there

should be a resolution of the conflict either by negotiating or by coordinating the individual

tasks.

2.3 The Foundation for Intelligent, Physical Agents

In 1996, a non-profit organization was conducted in Switzerland, to specify a set of stan-

dards for the communication and interaction of agents and to define an implementation of

such Agent Platforms. It took the acronym FIPA, which translates to “The Foundation

for Intelligent, Physical Agents”. From time to time, large tech companies were members

of this organization. The FIPA was later on accepted to be an official IEEE standards

committee.

The FIPA’s Mission as stated by the organization itself is:

“The promotion of technologies and interoperability specifications that facilitate the end-to-

end interworking of intelligent agent systems in modern commercial and industrial settings.”

Several agent platforms have adopted the FIPA standard and are said to be fully FIPA-

compliant. One of the protocols that the standard brings forward is the Contract-Net

protocol. Messages are written in FIPA-ACL, which was illustrated earlier.

2.4 Conclusion

This chapter tries to be a short introductory summary to the theory behind multi agents;

we only saw a glimpse of the otherwise wide research domain of MultiAgent Systems. We

gave a simple definition of the Agent entity and how the agents understand, communicate

and work together to solve bigger problems.

17

Chapter 3

Erlang Programming

3.1 Introduction

There are literally thousands of programming languages out there and probably there will

be more to come. Some of them are very powerful or run amazingly fast; others are more

expressive or easier to understand. But few of them really enjoy high popularity and most

programmers are familiar with only a handful of them.

But why use Erlang? Why we need yet another language?

While it is possible given any capable enough language to design complex systems or

solve hard mathematical problems, it is not certain if this is going to be an easy process.

Its all coming down to using the “right tool for the job”.

And Erlang can really shine if you want to:

• Write a program that can easily scale.

• Build a fault-tolerant application that can be upgraded on-the-fly.

• Build a mission critical server product.

• Design a soft real-time system.

• Use a language that has been heavily tested in industrial products.

• Write in a functional style.

18

3.1.1 History

The name “Erlang” can refer to either the Danish mathematician and engineer Agner

Krarup Erlang or the abbreviation Ericcson Language.

It all began when a small team of programmers in the Ericcson Labs was investigating

a suitable language to power their telecom products. After a lot of consideration they

decided to ditch the proprietary languages used by Ericcson at that time and build a new

language designed with concurrency and fault tolerance in mind.

Erlang is influenced by functional languages such as ML and Miranda, concurrent ones

such ADA and Modula. It is borrowing its syntax and many other things from Prolog.

Even the first virtual machine targeted for Erlang was Prolog-based.

Years passed and Erlang started to find more and more practical use inside the Ericsson

company. At the same time wonderful new features were being added to the language.

In 1991 Mike Williams decided to rewrite the virtual machine in C. This gave Erlang

the speed it needed to implement soft real-time systems.

In 1996 Erlang hit a major milestone when the “Open Telecom Platform” framework

(OTP) was released, a set of great tools and libraries to build robust and fault-tolerant

distributed systems.

Finally, after supporting hundreds of commercial applications and being tested on real-

world scenarios, the language was released as open-source in 1998, using a similar license

to MPL, the Mozilla Public License.

Since then, Erlang is gaining very much in popularity. The community is ever-growing

and its adoption is rapidly expanding mainly because of the recent need for building web-

oriented distributed systems.

3.1.2 Describing the Language

When people talk about programming languages or compare them (Warning: this can

lead to endless flamewars!), they try to fit the languages around predefined categories and

programming paradigms, even if sometimes this is not possible.

Erlang is described by many as multi-paradigmatic (i.e. you can express the same pro-

gram solution in different ways), although the Erlang community and the recent addition

of the OTP framework encourages writing with a specific programming style. In this way

it is easy to find certain distinct characteristics of the language:

19

Functional

It is a purely functional programming language at the core but impure at a broader

sense, because it allows to incorporate computational effects to be run inside func-

tions; that is , by design, it restricts the places you can run your side-effects so that

pure code does not mix up with impure functional code.

It is eagerly evaluated, offers single-assignment variables and immutable data struc-

tures. It has no-shared state and relies heavily on pattern-matching; a feature mostly

used in functional programming. We will talk about it later on.

Dynamic typing

You don’t have to add any type annotations to the language constructs, because

the type checking takes place at runtime, raising runtime exceptions when something

goes bad. Most of the time, writing an Erlang program feels like “scripting”. However

this gained flexibility comes with the cost of type safety and sometimes could result

in late uncaught bugs at production stage.

To address these problems, a pair of tools have emerged: TypEr and Dialyzer. TypEr

is a type checker for type annotated Erlang programs but can also work as a type

annotator, inferring types for erlang without any type specifications. Dialyzer is a

static analysis tool that is used by many developers as an auxiliary tool for catching

common programming errors and software discrepancies.

Concurrency-oriented

Erlang is built with concurrency in mind. The process is the most fundamental

concept of the language. An erlang process is somehow the smallest execution unit

that you model around your program’s logic.

Unlike system processes and OS threads, Erlang processes are extremely lightweight

and memory efficient. Reports have shown that you can spawn millions of processes

simultaneously while the system stays fully responsive.

The communication between processes is realized through message passing, a share-

nothing philosophy, where each process sends and receives small messages that con-

tain valid erlang data structures.

VM

Source code written in Erlang is translated into intermediate files, called .BEAM

20

files, which essentially is bytecode that gets executed by the Virtual Machine. This

allows code to be distributed to any platform given an Erlang VM exists for it.

The VM includes a garbage collector and a scheduler for each OS thread. All pro-

cesses live inside the VM and get scheduled accordingly.

Distributed

A distributed Erlang system is composed of a number of different Erlang nodes

running in one or more computers. Each node is a unique instance of the VM.

The extra semantics added to the language can alleviate the development of such

distributed applications. In Erlang, specifying or referring to either a local or a

remote node makes no difference.

3.1.3 Special Features

Here are some of Erlang’s distinct features that you will not probably find in other lan-

guages:

Binaries and the bit syntax

The Binary data type is a special Erlang data structure, a built-in construct of the

language. It is a sequence of bytes (unsigned 8-bit bytes by default), that are used

to store and manipulate large amounts of raw data.

Just to make things even easier, the language offers the bit syntax for manipulating

binaries in a high-level manner. The bit syntax is just like pattern-matching with the

difference that where you would normally work on typed values, now you pattern-

match on “untyped memory”.

Common use cases include:

• Designing, building and parsing of network protocols.

“..a bit program can read like the high-level specification of a protocol rather

than its low-level (and opaque) implementation.” [6]

• Serializing loads of data for later storing or transferring them.

• Swapping high-level data structures (e.g. strings and tuples) with binaries in

order to boost performance and gain in space efficiency.

21

Hot code loading

In large industrial systems or live production servers, downtime is absolutely crucial

and must be minimized. Often, special situations arise and the system software must

be upgraded (or downgraded):

• When the system must be patched against a bug.

• When a new application feature rolls out.

• When you need to prototype through trial&error.

In most conventional languages and runtime systems you must bring down the whole

or a part of a live system to upgrade its software. This inserts important downtime

and a possible loss of data.

By contrast, software written in Erlang can be upgraded during runtime with a

technology called hot code loading or hot code swapping. In most occasions, hot code

loading can be as easy as a normal function call.

The OTP framework offers some great tools to safely upgrade a running system. And

if things go badly, you can of course roll back to a previous version of the code; again

by not taking down the system.

Fault-tolerance

Joe Armstrong, one of the creators of the Erlang language, famously said in one of his

theses “Do not program defensively. Let it crash”. The let-it-crash philosophy came

to be one of the greatest aspects of the language. Although by definition it comes to

contradiction with fault-tolerance, in essence they mean very much the same.

When you use defensive programming in your applications, many times you end up

with “polluting your code with needless guards trying to keep track of the wreckage”

(see Java exceptions). With Erlang you write down your code failure-free; you deal

about failures only later on. This results in a cleaner separation of the program’s

logic and the error handling code.

When an error occurs in a process, it is common to crash the process and let the error

propagate on “neighbouring processes” (i.e. processes that depend on each other).

The rest of the system that don’t depend on the crashed code will remain unaffected

and will still run. The point is that the part of the system that went down, hopefully,

will be restarted by a higher-hierarchy process (called the supervisor). This hierarchy

22

is defined in supervision trees, a core idea of Erlang/OTP discussed below in further

detail.

Soft real-time applications

If high availability and throughput are demanding properties of a system, you must

ensure that your application can gracefully handle high loads on peak times.

Erlang is a perfect fit for such an application. This can be attributed to the fact

that each process runs in total isolation. It has its own memory and its own garbage

collector. In this way, an Erlang system does not suffer from garbage collection

pauses.

It is not surprising that many servers and proxies are written entirely in Erlang. It

comes so natural to spawn a separate process for each client connection; a thing that

you wouldn’t dare to do in any other language.

The OTP framework

Lessons learned building thousands of concurrent and distributed applications by

Ericsson in Erlang through the years, have led to the creation of the OTP framework,

an extension to the traditional Erlang. The OTP stands for Open Telecom Platform

and unlike its name suggests, it is not limited to telecommunication applications.

Practically it is a middleware for Erlang development.

The programmers can use a common ground to facilitate development time and

effort by constructing behaviours, a formalization of design patterns. Furthermore,

code written with OTP is more portable and maintainable.The joining of individual

applications becomes such an easy process, for the reason that OTP applications

share a similar programming logic.

Besides this collection of libraries, the OTP framework includes a set of other powerful

tools, such as a distributed real-time database called Mnesia, complete web and ftp

servers and a CORBA Object Request Broker.

Language interoperability

Often, you have to design large GUI applications or do heavy number crunching in

a distributed fashion. Other times you have to add concurrency levels on top of an

already built web app or an old C codebase. Instead of rewriting the whole thing

(with possible loss in performance, because Erlang is “not good with numbers”) in

Erlang, you can use the interfacing capabilities of the language.

23

While most other languages provide a Foreign Function Interface (FFI) library to

link with code written in other languages, Erlang follows a different approach. It

extends the message passing paradigm, through ports and linked drivers, to interact

with foreign code. To the programmer, it feels like surrounding the foreign code with

a thin layer of an Erlang process; communicating with this process remains just the

same.

How about talking to an Erlang node from a non-erlang-powered system? Er-

lang/OTP again has a solution for this, offering rich C and Java libraries so that

you can masquerade your program to look like a usual Erlang node. The communi-

cation between such nodes works flawlessly.

Multicore-ready

The recent increase in multicore processors’ availability is pushing popular languages

to add the necessary ingredients for supporting Symmetric Multi Processing (SMP).

While many have succeeded to utilize the advantages of the SMP technology, others

have failed to come up with an efficient parallelism design or deliver a working im-

plementation (see the Python GIL). But Erlang had a solid concurrency model for

years. The only thing left was to translate it to SMP.

The SMP support for the language was added later on and became stable in the R11B

release (in 2006). Briefly, the implementation involves spawning a separate process

scheduler for every core/processor in the system. The schedulers pick up their next

jobs from one common run queue, which is a shared data structure protected with

locks.

In most cases, the developer can enjoy the SMP performance gain without making any

changes to the program. Applications in Erlang are written with a lot of individual

processes that allow fine-grained parallelism.

3.1.4 Case Studies

Many Ericsson network hardware products shipped are powered by Erlang and lately the

language has been used by web companies as a mean to achieve scalability, high-availability

and robustness in their web services.

Ericsson Switches

Erlang has been used in many successful network products such as broadband, GPRS

24

and ATM switching solutions. However, after Java becoming the new trend in the late

90s, Ericsson banned Erlang for new projects in favor of more mainstream languages.

Facebook Chat

The entire Facebook instant messaging system is powered by ejabberd. Ejabberd

is an Erlang-written, open-source, extensible application server which speaks the

Extensible Messaging and Presence Protocol (XMPP, formerly Jabber). Right now,

it is the only solid solution for setting up a robust chat service and is widely-used by

many sites and companies for private internal communication.

Amazon SimpleDB

“Amazon SimpleDB is a highly available, scalable, and flexible non-relational data

store that offloads the work of database administration. Developers simply store and

query data items via web services requests, and Amazon SimpleDB does the rest.”

(from the Amazon site)

It is build around CouchDB, a new NoSQL Erlang-powered database. Instead of

storing rows of data inside tables, CouchDB saves JSON documents and serves them

via a RESTful interface. Also, it offers a master/slave replication scheme that in-

creases throughput and fault-tolerance. In case of a failure on the master server, a

slave instance can take charge.

3.2 The Basics

This is a short introduction to the language syntax with some examples to help you write

a simple program in Erlang. The language is said to be rather small in size, providing only

the essential abstractions for modeling a functional application.

3.2.1 Datatypes

Integers

In Erlang integers denote arbitrarily large whole numbers with bignum conversion; that is

when an integer cannot fit in a word it is converted to its bignum representation, which

uses arbitrary number of words for storing it.

25

1

19

1000000000000000005

An integer can be positive or negative and is expressed in base 10 by default. The

notation Base#Value can be used to write integers in other bases.
1> 2#101010.

42

2> 16#FFFF.

65535

Characters

Characters are just ASCII integer values and can be written with the $Character syntax.
3> $A.

65

4> $\n.

10

Floats

Floats are Erlang’s real numbers. They are 64-bit double-precision floating point numbers.

3.14159 -5.4E-9

Arithmetic Operators

There exists the classical operations on integers and floats: addition, subtraction, multi-

plication, and division:

26

5> 7+5.

12

6> 7-5.

2

7> 7*5.

35.

8> 7/5.

1.4

9> 7 div 5.

1

10> 7 rem 5.

2

Atoms

Atoms are symbolic, constant literals that are used to make code more readable. The data

type is inspired by Prolog and is analogous to a Lisp symbol. For people not familiar with

these languages, it can be thought of as a huge enum.

They must be started with a lowercase letter and can be followed by any alphanumeric

character or the symbols _ and :
hello

i_am_not_a_string

root@localhost

nikos@bezirg.net

If you want to start it with an uppercase letter or include other symbols, you can enclose

the atom inside single quotes as follows:
’Hello World!!’

’uom@195.251.209.3’

The only operation on atoms is just the comparison, albeit a very efficient one. The

implementation of atoms includes a big table inside the VM that stores all atoms at creation

time. Once an atom has been created, it stays until the system stops; atoms are not

garbage-collected. Another characteristic is that atoms remain in the object code, so

debugging becomes easier.

27

Booleans

The atoms true and false are used as the boolean values. They are the result of com-

parisons:
11> 0==1.

false

12> 1<100.

true

13> a>z.

false
These are the logical operators:

and andalso or orelse xor not

Lists

Lists are the classical data type found in all functional languages. Essentially it is a

collection of elements that can grow or shrink in size. An example:

[5,1,$d,mpla,true]

The empty list is denoted with [].

Unlike the Haskell language, Erlang list elements do not need to be of the same type.

List processing takes place at the left part of the list. With the cons operator (|), We

can split a list into its first element, the head, and the rest of the elements, its tail. The tail

of the list must be itself a list. In the same way, we can add an element into the beginning

of a list.
List = [Element | List] or []

[a,b,c] <=> [a | [b,c]] <=> [a | [b | [c]]] <=> [a | [b | [c | []]]]

Strings

Strings is the same as a list of characters. Erlang does not treat them differently. The

syntax is:
14> "ABC" == [65,66,67]

true

28

Atoms vs Strings

It is possible to use strings in place of atoms. However, strings are not very memory-efficient

and string comparison is much slower than comparing atoms.

In the other way around, using atoms for strings could also work, but in practice,

because of the atoms not being garbage-collected, there is a limitation on the number

of atoms that can be created. So, the use of auto-generated atoms (via list_to_atom

operation) should be avoided.

Tuples

Tuples are just like lists but with a different implementation and no cons operator. To

manipulate tuples you use some provided built-in functions.

Compared to lists, tuples are a little more efficient in memory and also in access times.

But when you should use the one or the other type? Generally this rule exists: Use lists

when you have a variable number of items and use tuples for a fixed number of items. Also,

handling huge lists tend to be slow.

Records

When you have to deal with tuples - with size let’s say over 10 elements - the construction

of the tuple and the processing of elements becomes cumbersome. For this purpose there

is the record data type. Records are “named tuples” in the sense of giving each index of

the tuple a unique name. The record fields are accessed by name, just like a C structure.

On the inside, records are built using tuples. During compilation phase, the prepro-

cessor translates them to plain tuple structures. The speed and memory efficiency are

identical.

Defining a record

-record(name, {field_1 [= default_1],

field_2 [= default_2],

... ,

field_n [= default_n]

}).

-record(book, {title, author, year=none}).

29

Instantiating it

#book{title="An Introduction to MultiAgent Systems",

author="Michael Wooldridge",

year=2009}

Modifying it

Book1#book{year=2007}

Accessing its elements

Book1#book.title

Variables

Combining all of the above datatypes, we can create complex data structures and store

them in variables.

Variables must begin with an uppercase letter and be followed by alphanumeric letters,

integer and underscores.
One = 1.

Two = One + One.

Author = "Nikos".

Thesis = #book{title="some_title", author=Author}.

Be careful of the single-assignment property of variables. Something like this,

X = X+1

is not legal in Erlang. Once something is defined, it cannot be redefined. The above

statement is not side-effect-free and issues a destructive update on the variable, a technique

that most common languages rely on. Erlang uses the mathematical notion of a variable,

that is a statement about a fact.

3.2.2 Pattern Matching

During an assignment operation, the right-hand side is evaluated and then matched with

the left-hand side. If the pattern match succeeds, any free variables of the left-hand side

30

are bound to the computed values. If it fails to match, an error is raised. An example can

clarify things:
[X | Xs] = [1,2,3,4] ... X = 1 , Xs = [2,3,4]

{hello, Name} = {hello, nikos} ... Name = nikos

{hello, Name} = {cu, nikos} ... will fail

Pattern matching is a feature mostly found in declarative languages.

3.2.3 Functions

In a functional language, functions are the building blocks to construct your program’s

logic. In Erlang, functions occupy an even more central position, because they have a

double role; that of an action and a process. We will check how processes work in a later

section. For now, they can be seen as classic C functions.

They have a name and a list of zero or more parameters, enclosed in parentheses.
hello(Name) ->

io:format("Hello "),

io:format(Name ++ "\n").

The statements in the body of the function will execute sequentially and the last ex-

pression evaluated, will be the return value of the function. We do not have to write down

return, like other languages, because in Erlang, every function has to return something.

There is no void type. If we want to return a nil value, conventionally we use the ok atom.
15> hello("World").

Hello World

ok

Here, the last statement is a print operation that returns ok, so consequently our

function also returns ok.

Most of the times, you write down functions using pattern-matching, that is you write

a series of clauses that the system will try to match step by step. If a particular match

succeeds, then the body of the matched clause will run. It is common to have a catch-all

clause, that always succeeds; otherwise, an error will occur if all other clauses fail to match.

An example:

31

inc(X,0) ->

% that is meaningless, increase sth by 0?

X.

inc(X,N) ->

% increase x by n

X+N.

The length of the parameter list is the function’s arity. In Erlang functions can exist

with the same name but different arity.
inc(X) ->

% increase x by 1

inc(X,1).

This comes handy when building an API, because we can have optional parameters or

pass default values to functions.

3.2.4 Modules

In Erlang, the module is the basic compilation unit. Each module contains functions,

which as a group form an API. Modules are written in files with an .erl suffix. They

contain some built-in attributes, such as compiler directives, a list of exported functions, a

version number for hot code swapping, and some user-provided attributes such as author

or date.
-module(test).

-author(nikos).

-export([inc/1]).

...

...

...

3.3 Sequential Erlang

Functional programming relies heavily on recursion. Programmers familiar with imperative

languages will feel a little out of place at the beginning, because basic imperative constructs,

such as while and for are missing from the language. Instead control flow is done through

recursive function calls.

32

3.3.1 Conditional Constructs

Erlang provides the case and if constructs for conditional evaluation.

Case

We have seen already pattern-matching done in the assignment and the function level.

Now, again, we use the same technique slightly in a different way.

Instead of introducing any new variables or defining functions, we match against an

expression and on the success of it, we execute some code. In a way, we map clauses to

series of statements, essentially introducing control flow:
case Expression of

Pattern1 -> expression1, expression2, ..;

Pattern2 -> expression1, expression2, ..;

..

_ -> expression1, expression2 ..

end

The case forms resemble a switch in the C-like languages.

The _ pattern matches any value, so it will always succeed, much like a default label

in C/Java.

If

The if construct is similar to the cond construct found in Common Lisp. The syntax is:
if

Guard1 -> expression1, expression2, ..;

Guard2 -> expression1, expression2, ..;

..

true -> expression1, expression2 ..

end

Guards must be expressions that evaluate to a boolean value. From top to bottom, the

if construct tries to find a truthful predicate and execute its statements.

3.3.2 Guards

Guards are a useful extension to functions, that can make code much clearer and more

readable. In many situations, you do not only want to (pattern-) match against structures

33

of data, but also on particular values of them. With guards you can create individual

clauses for instructed values of the formal parameters of a function. Following a previous

example:
inc(X, N) when N < 0 ->

error.

Here, it is not meaningful to increase a value by a negative number, so in this situation

the user returns a custom error atom to signal failure. Later on, we can see how we can

raise and handle true built-in exceptions.

Another thing we can do with guards is elementary type checking. Because the language

lacks a strong type system, we can check for types calling some Built-In Functions (BIFs)

as guards.
inc(X,N) when is_list(N) ->

% the user entered a string (list of chars) instead of a number

% try to casted to an integer

Int_N = list_to_integer(N),

X+Int_N.

Be careful, only BIFs can be used as guards. This is mainly for two reasons. First,

BIFs are written in C for speed, and second, user-implemented functions could introduce

side-effects before the function body is even executed. This can be contrary to the pure

nature of functional programming.

3.3.3 Tail-recursion

As we said earlier, recursion is a very widely used technique to express iterative computa-

tions in a functional way. Also, it is common through recursion to divide a problem into

smaller subproblems (divide&conquer).

The canonical way of writing such recursive functions (often by a straightforward trans-

lation from their mathematical forms) sometimes can be very inefficient. Take a look at

the classical summation function definition:
sum([]) -> 0;

sum([Head | Tail]) -> Head + sum(Tail).

The direct recursion used here, although it seems normal, when used on very large lists,

will grow a lot in memory.

Instead, using an accumulator:

34

sum_acc([], Sum) -> Sum;

sum_acc([Head | Tail], Sum) -> sum_acc(Tail, Head+Sum).

sum(List) -> sum_acc(List,0).

we can sum large lists in a memory-efficient manner. This is achieved through the

Tail-Call Optimization (TCO).

When the last call inside a function is a call to the function itself, the call can replace

the stack frame of the current procedure with one of the newly called procedure. Tail-

recursive functions are implemented in such a way that do not consume extra space on the

call stack.

In Erlang, tail-recursion is very significant for the reason that processes, are in a sense

“functions that live forever”. The looping inside these function-processes is done through

tail-call. Without Tail-Call Optimization the processes would build up memory in no time,

resulting in the system’s memory running out of space.

3.4 Concurrent Programming

A system is said to be concurrent when several of its computations are being executed

simultaneously, possibly interacting with each other. In Erlang such a concurrent compu-

tation is called a process. The interaction between processes is happening through message

passing.

Asynchronous message passing and the whole Erlang philosophy are derived from one

of the many theoretical models for describing concurrent systems, the Actor Model [2].

Erlang’s concurrency infrastructure is a practical implementation of this mathematical

model.

3.4.1 Process

A process in Erlang could be thought of as a “blessed function”. In fact, every function

already written can be turned into a long-living process without any hard work. This

“blessing” is called spawning a process.

35

Spawning a new process

Lets say, we have defined this function:
loop() ->

io:format("Hello world! \n"),

timer:sleep(5000),

loop().

This function prints a message on the screen every 5 seconds.
1> test:loop().

Hello World!

Hello World!

...

When we call this function, we observe that the shell becomes locked and we cannot

execute anything else. This is happening because the function is being executed by the

shell’s process itself and cannot pass control to us. What should we do is spawn a new

process for our beloved function.

2> Pid = spawn(test, loop, []).

The spawn BIF takes as input the module, the function name and a list of parameters

to be passed to the function (in this case none). Then, it creates a new process and assigns

a unique identification number to it, the Process ID (PID), much like the Unix PID.

The Erlang people (most of them have a telecom background) like to give the “telephone

number” as an example of a real-world Process Id. We should store this Pid returned by

spawn in a variable for later communicating with the process.

The spawned process will “live” as long as it has more code to execute. When it has

nothing left to execute, it is said to terminate normally. If an error occurs during the

lifetime of the process, it is said to terminate abnormally.

It is very important, as we said earlier, when creating the process, to specify a tail-

recursive function, otherwise the process will leak memory.

3.4.2 Message Passing

The processes communicate by passing messages to each other. The incoming messages

are stored in the order they are delivered in a special queue structure, called the mailbox.

Every process has its own mailbox and is responsible for reading and deleting its delivered

messages.

36

Following the previous example, sending a message is as simple as writing:

3> Pid ! "people".

With this command we send to the previously acquired PID of the process a string

message. The contents of the message can be any valid Erlang structure.

In this situation, the message will be delivered, however it will not be processed because

the loop function does not contain any message processing functionality. That way, the

message will stay indefinitely inside the mailbox.

If we rewrite the function like this:
loop() ->

receive

Name -> io:format("Hello ~s!\n", [Name])

end,

loop().

load the updated function and respawn a new process:
4> c(test). % compiles and loads a module

5> Pid2 = spawn(test, loop, []).

6> Pid2 ! "people".

Hello people!

The message is being popped from the mailbox and processed. We wrote a receive

form, yet again a pattern-matching construct, that is used to try messaging patterns and

upon a successful pattern-match execute some statements.

3.4.3 Timeouts

When a process stumbles upon a receive statement, it suspends execution and tries to read

the next message from the mailbox. If the mailbox is empty or pattern-matching fails, the

process will transition to a WAITING state until a preferred message comes.

Sometimes, it is not desirable to wait for an excessive amount of time a message to be

delivered. Maybe after all the message will never come. The after statement inserts a

timeout in the receive construct and puts a constraint on the time spend by the process

on waiting for a message.

37

loop() ->

receive

Name -> io:format("Hello ~s!\n", [Name])

after 5000 -> io:format("No message!")

end,

loop().

Here, after 5 seconds passed with no incoming message, the process will print instead

a “No message!” string and loop again.

3.4.4 Registered Processes

In a live system, there exist processes acting as services; that is long lasting activities.

Rather than keeping track of their PIDs, you can register an alias for them and reference

them from that time on by their unique registered names. The example is self-explanatory:
1> Pid1 = spawn(web, blog_server, []).

2> Pid2 = spawn(web, log_server, []).

3> register(my_blogger, Pid1).

4> register(my_logger, Pid2).

5> my_blogger ! restart.

6> my_logger ! off.

Here are some BIFs on the registration mechanism:

register(Name,Pid) Registers a process. The Name must not be registered.

unregister(Name) Unregisters an already registered process.

registered() Lists all currently registered processes in the system.

whereis(Name) Returns the PID associated with the Name

3.4.5 Concurrency Pitfalls

Writing concurrent programs is far from being a “walk in the park”. Even if your code

passes the compiling and testing phases, concurrency errors may not arise, until you finally

shipped the application. Erlang, being a robust concurrent language, strives to solve some

common concurrency errors but there is still a possibility to stumble upon one of those:

38

Race Condition

When two or more activities “fight” for a mutual resource, a race-condition could happen.

The outcome after a race-condition probably will be totally different from the expected

result. Generally, race conditions are very hard to catch and require heavy stress-testing

of the system.

Conventional languages cope with this issue by throwing locks and mutexes on every

resource. Erlang begs to differ by providing a solid concurrency model. Race conditions

are somewhat rare in Erlang, but there are solutions when things go bad.

Deadlock

Since Erlang programs don’t use locking mechanisms you would think that the language

is deadlock-free. And you are right in some way, because “Deadlock in a strict sense does

not exist in an Actor system” [2].

The whole truth is that deadlocks can be seen in an Erlang system, although it is

extremely rare. Consider the following situation: Process A sends a synchronous message

to process B and waits for a response; in the same time process B makes a synchronous

call to A and waits for it to respond. This is clearly a deadlock and the two processes will

be stalled.

Process Starvation

One even more rare occasion is process starvation. Process starvation - a situation you

mostly have to deal in Operating Systems - is noticed when a process does not get any

execution time by the scheduler and remains for a long time in a holding state waiting to

be scheduled. This typically happens when you mess up priorities.

Although you can play with the “niceness” of processes in Erlang, like you would do in

a UNIX system, it is not advised to do so. The process scheduler in the runtime system

is said to be very fair and the garbage collection happening on a per process basis makes

you not care at all about process starvation.

3.5 Error Handling

There are different exception-handling mechanisms in Erlang and for this purpose there

exist three different classes/types of errors to describe in some way failure of execution.

39

error

Runtime errors belong to this class of exceptions. Also, you can raise yourself an error

by calling the BIF erlang:error(Term). Term can be any valid Erlang structure that

accompanies/describes this error.

throw

The throw exceptions are essentially non-local returns. They are raised by calling

erlang:throw(Term). Their use is discouraged.

exit

Exit are the most interesting of the three. They are heavily used on concurrent/distributed

systems to inform “caring” processes about failure in another part of the system. Exit

signals can be produced either by linked processes that fail or by explicitly killing a process

with an exit(Reason) BIF.

try..catch

How can we handle these exceptions? We surround code that might possibly fail with a

try..catch statement. This construct, again, is also using pattern matching. Upon matching

with a particular exception a series of statements is executed.

In the example that follows, we run a possible-to-fail computation and catch all excep-

tions. Depending on the particular type of exception, we return back to the user a tuple

including information about the failure.
try this_may_fail(X) of

Val -> no_failure

catch

exit:Reason -> {exit, Reason};

throw:Throw -> {throw, Throw};

error:Error -> {error, Error}

end.

40

3.6 Distributed Erlang

There are some reasons for (re)writing an application in a distributed manner:

• Performance

We can benefit in speed from distributing the workload of a program across multiple

machines.

• Scalability

There are times that a machine can reach each limits (this is mostly encountered in

web services). We want an easy way to withstand a high increase in traffic by just

throwing more machines in the system.

• Reliability

Replicating services and data through many host computers can give us robustness

and reliability in case of a failure in one of our machines. Any work that the machine

was doing before, is delegated automatically to another machine through failover &

takeover techniques.

• Distributed by nature

Some applications (such as ours!) are inherently distributed. Working with a sophis-

ticated distributed programming language seems perfect.

3.6.1 Nodes

A Node is just a running Erlang Run-time System (RTS) that has been given a name. We

can run as many nodes as we want on the same or on a remote machine. Lets start two

nodes on the same host by entering this in one command line:
$ erl -sname foo -setcookie 123

Erlang R14A (erts-5.8) [source] [smp:2:2] [rq:2] [async-threads:0]

Eshell V5.8 (abort with ^ G)

(foo@debianlap)1>

and on the other terminal:
$ erl -sname bar -setcookie 123

...

(bar@debianlap)1>

41

Then on we can communicate and send messages in processes running on any node in

the same way we did with local processes:

(foo@debianlap)1> Pid_Bar ! restart.

We send a message to the other node just by having its Process Id. The PID is not

only unique to the local machine, but throughout the whole distributed system. This

wonderful ability is called the transparency of communication and gives us the necessary

abstractions upon which we can structure our program’s logic, without caring about locality

of execution.

We can even utilize the ability of registration and do something like this:

(foo@debianlap)2> {my_blogger,bar@debianlap} ! restart.

and talk to registered processes that run in remote/other nodes.

3.6.2 Communication

What is happening behind the scenes, is that a TCP/IP connection is established for every

pair of nodes of the distributed system. Any new node that comes in, will automatically

spawn new connections to any other node in the system.

3.6.3 Security

Authentication is, basically, realized with the use of a magic cookie. Nodes that want to

start a conversation must set the same cookie, an arbitrary string that is stored locally in

a .erlang.cookie file or provided as a command-line argument.

This protection method is very rudimentary and should be taken with great care,

otherwise a stolen cookie could possibly give full control of the locally running node to an

unauthorized remote source.

3.6.4 rpc

The Remote Procedure Call (RPC) is a well-known protocol for interacting between pro-

cesses and services of large distributed systems. Implementing RPC comes very natural,

for Erlang being so concurrency and distribution oriented.

42

The standard library provides an rpc module for writing rpc-enabled applications. To

call a function on another node you just execute:

rpc:call(Node, Module, Function, Arguments)

3.6.5 epmd

The Erlang Port Mapper Daemon (epmd) is an OS thread that listens (on port 4369

by default) for incoming connection requests by remote nodes and maps them to the

appropriate local node.

3.7 Introduction to OTP

The OTP framework provides us the abstractions we need to easily model our concurrent

intentions. Here, we take a look on the three generic behaviours of the OTP, that is the

Server, the FSM and the Supervisor. If you come from an object-oriented background,

you can think of the OTP behaviours as an abstract interface or a partially implemented

class, where you “fill the left out parts” with your implementation.

Next, we will bundle these behaviours together, along with any metafile, into a package

using another behaviour, called the OTP Application.

3.7.1 Server

Generally, in a client-server model, the purpose of the server is to accept some calls and

respond to them. Also, the server maintains an internal state, which he modifies according

to the received messages.

To build a server behaviour, we write down a callback module that will export a set of

particular functions.
-module(my_server).

-behaviour(gen_server).

-export([init/1,

handle_call/3,

handle_cast/2,

handle_info/2,

terminate/2,

code_change/3]).

43

A typical description of these functions:

init(Args) -> {ok, State}

This function is called upon instantiating the server. If everything is ok, it should

return the initialized state of the server.

handle_call(Request,From,State) -> {reply, Reply, State}

This function is called when a synchronous request to the server is made. The server

possibly alters its state and returns a reply to the caller.

handle_cast(Request,State) -> {noreply, State}

When an asynchronous call (a cast) is made, the server does not reply to the sender,

but will just process the request received and consequently change its state.

handle_info(Info,State) -> {noreply, State}

The calls and the casts to the server are OTP-custom-built messages, so it is not

advisable to send messages to a gen_server (and generally any OTP behaviour)

using the primitive message passing we saw in the previous chapter.

However, if this is required, you can implement the handle_info function to handle

the classical Erlang messages.

terminate(Reason,State) -> ok

Terminate is, in essence, the opposite of the init function. It contains cleanup code,

which gets executed before the server process is terminated.

A termination of a behaviour does not necessarily indicate failure in the program.

It is possible that a supervisor signaled a restart or a shutdown of his supervised

processes, or the process itself decided to gracefully stop executing.

code_change(OldVsn, State,Extra -> {ok, NewState}

This callback function will run during a live upgrade of the system (using the hot

code loading techniques we mentioned earlier). Its main purpose is to safely modify

the internal state to use a possibly new format. If this turns out to be a very difficult

process, you can of course reset its state.

The interaction with a gen_server is realized through some library functions:

44

gen_server:start_link(ServerName, Module, Args, Options) -> {ok, Pid}

Spawns a new child server process and links it with the parent process. If the server

goes down, the parent process will exit too.

gen_server:call(ServerRef, Request) -> Reply

Sends a request to the server and waits for a reply.

gen_server:cast(ServerRef, Request) -> ok

Sends an asynchronous request and returns immediately.

3.7.2 FSM

This behaviour implements an event-driven Finite State Machine (FSM) using a gen_server

as the basis. By definition, the loop in an event-driven FSM makes these steps:

1. Consume an event

2. Take some actions

3. Transition to a new state

In the gen_fsm behaviour, the events are signaled with OTP messages. The states are

just callback functions inside the module and the actions are normal statements that the

fsm executes.

A typical gen_fsm will look like this:
-module(my_fsm).

-behaviour(gen_fsm).

-export(init/1,StateA/2,StateB/2,terminate/3,code_change/4).

StateA({switch, on}, StateData) -> % the event is pattern-matched

...some actions here...

{next_state, StateB, NewStateData}.

StateB({switch, off}, StateData) -> % and again here

...some actions here...

{next_state, StateA, NewStateData}.

What is missing here, is the normal init, terminate and code_change functions. We

should write them in a similar fashion to the gen_server example.

You send events to the FSM process by calling gen_fsm:send_event(FsmRef, Event).

45

3.7.3 Supervisor

The supervisor is the most important feature of the OTP framework, yet it still remains

easy to comprehend. What the supervisor basically does, is to monitor a set of processes

and restart them if necessary. These processes can in turn be other supervisors or just

workers (i.e. server, fsm or event behaviours).

The parent supervisor with its spawned children form a tree of processes, called the

supervision tree.

Supervisor

Supervisor

Worker Worker

Supervisor

Worker Supervisor

...

Figure 3.1: An example of a simple supervision tree

The restart strategy that the supervisor follows can be one of:

one_for_one

Restarts only the crashed child process and the siblings remain unaffected.

one_for_all

Restarts all the child processes when a crash occurs in one of them. This suggests a

strong dependency between the siblings.

rest_for_one

Will restart only the processes that were started after the crashed process. This

implies that the child processes were spawned on a dependency row.

The Supervisor and the Child Specifications will go inside the init callback function

of the supervisor module.

3.7.4 Application

An OTP Application is not used solely as a packaging medium (library application) for

distributing code; it can act as an entry to, and an exit from your program. This type

46

of applications are called active applications. Every active application should internally

specify its interface; that is a root supervisor that will spawn all other processes of the

system.

The only things you have to implement is the start and stop functions.

The library as also the active application dictate a directory structure where the mod-

ules and the metadata files should live in:

application-name/

|--- src/ Source code (.erl)

|--- include/ Include files (.hrl)

|--- ebin/ Bytecode of the source (.beam)

|--- doc/ Documentation of the code (EDoc)

|--- priv/ Non-erlang-related files (such as dlls)

3.8 Conclusion

Although, we strived to cover the Erlang language from A to Z, we can jokingly say that

we stopped somewhere around “T”. There are parts that we left out, because we think they

are rather unimportant to the implementation of our application, such as the functional

merits of the language (i.e. lambda expressions and higher-order functions), the very

interesting Hot-code Loading technology, Interfacing with other languages and last of all

Socket programming.

47

Chapter 4

System Analysis

We present here the design and decisions made for our system based on the theory behind

MultiAgent Systems. After that, we will see how we came to implement it, with the help

of the distributed mechanisms provided by the Erlang language and its OTP framework

tools.

4.1 Overview

In the introductory chapter, we gave an early description of the problem we are trying to

solve. Now we are going to restate the same problem in a different way, so as to better fit

the technicalities of the solution.

The old-school paper recycling involves three kinds of individuals that actively partic-

ipate in the process chain: the companies, the municipal office and the recycling truck

vehicles. Lets examine a typical interaction:

After unpacking a newly arrived shipment or when the paper-made products start to

wear out, a company employee will realize that some paper quantity is no longer used and

has been left over. Then, the person in charge inside the company will call by telephone

the municipal office to state that they dedicate a paper amount to recycling.

The office, will then, try to reach out, in sequence, every truck that it administers and

announce them about the new request made. The truck driver will examine the request and

decide to respond to the office positively by stating the time he/she believes is necessary

to carry out the task or negatively by refusing to handle such a request for his/her own

reasons.

After that, the municipal office will gather all responses made. It will filter out the

48

refuses and rank the affirmative responses based on the proposed time of each one. The

office will award the best truck (that is the truck with the shortest dispatching time) to

carry out the task.

Finally, the winner truck will call the office a last time, to indicate that the task has

been carried out. This last call is necessary, because the central office has to be sure that,

at the end, the request will be successfully processed. If a lot of time passes with no news

from the assigned truck, the office is free to reestablish a negotiation for the request and

assign the job to a different truck.

In comparison with the approach described above, our application wants to:

• Get rid of the central office

• Automate the communication mechanisms

• Help the truck driver to manage tasks and transactions

In this way, we can attack the distribution and management bottlenecks found in the

aforementioned process.

To put it it simply, what we are looking for is an entity that will handle the tasks for

us and communicate with other entities when needed. This entity should:

• Act without guidance (autonomy)

• Take the initiative when suited (proactivity)

• Change its intentions when they are no longer valid (reactivity)

• Interact with other entities so as to better achieve its goals (social ability)

All these characteristics can be found in an agent. We will replace every person that

takes part in the interaction with an appropriate agent. Specifically, we will construct an

agent that will take the role of the customer company and substitute the redundant tele-

phone calls with digital communication. Every truck will be represented by a truck agent

that will have the double goal, that of managing its set of tasks and also communicating

with other agents.

We can easily recognize a familiar interaction pattern taking place in the old-school

process. A task is announced by an initiator to a list of participants, then these participants

bid for acquiring the task, and at the end the task is delegated to the best bidder. This

distinctive pattern closely resembles the Contract Net interaction protocol.

49

As we said earlier, one of our intentions is to remove from the system the need for a

central administrative authority (i.e. the recycling office). Although this can be easily

done, we still need a central point where the agents’ identities will be stored. Imagine a

MultiAgent system where the agent can interact with the environment but cannot com-

municate with other agents, because it does not know where they “live”. For this reason,

we need to set, inside the system, a Directory Facilitator (DF). You can think of the DF,

as a phone book but instead of mapping names to telephone numbers, it maps agents to

their addresses.

4.2 Modeling

We think it would be helpful to draw a general picture of the concept with all the imple-

mentation details removed, so as to better understand the purpose and the nature of our

system.

There are three types of entities that form this multiagent system:

• the Directory Facilitator (from now on just DF),

• instances of the Customer type

• instances of the Truck type

The first step an agent (Customer or Truck) has to take to become a member of this

system is to login, by passing some user information to the DF. The DF stores and manages

a list of all authorized agents. Upon authorization, the agent is becoming aware of all the

other connected agents and can interact with anyone he prefers.

A typical situation, after that, involves issuing a recycling request by the Customer.

Now that the Customer knows about all subscribed trucks of the system, sends a request

to each one of them, stating his position and the paper quantity he wishes to recycle.

The interaction goes into a bidding phase, where Trucks respond affirmatively to the

Customer with a bid; that is an estimated time they believe is needed to fulfill the request.

Naturally, Trucks can also refuse to such a request, for their own reasons and beliefs.

The Customer receives all bids, processes them, and decides to pick the truck with the

best bid as the agent that will eventually perform their request.

The Winner-truck, then, begins to process its assigned job and take the necessary

actions to bring itself closer to that goal. Upon arriving to the Customer, it will pick up

the paper quantity and mark the job as finished.

50

Later on, when the truck will become near full, it will head back to the Recycling

Factory to unload its quantity and start possibly a new conversation.

Of course, this is just a trivial case where everything went exactly “by the book”. In

real cases, the interactions involved will be arithmetically larger and more complex, so

things can go wrong. For this purpose, we designed a robust, fault-tolerant system, adding

to it enough mechanisms to handle such situations arised.

4.3 Specifications

Prior to implementing the actual program, we did discuss and conclude on behaviours such

a system must impose:

Online

The system and its services should be online and available all the time, with as little as

possible downtime.

Real-time

Generally, in MultiAgent systems, time plays a very critical role. That means, the decisions

and actions the agents take is bounded by time. The computations involved and the

overall communication process of our system should be extremely fast, even measured in

milliseconds. Often, this is not the case, because of the limitations created by slow network

connections.

Furthermore, the time spent between issuing a request and finally assigning it to a truck

should be as minimal as possible, because otherwise the customer will have the illusion

that the system is unresponsive.

Protocol

To make communication easier, the agents should speak a mutually understood language.

This is realized by using a well-defined protocol. We came to implement a custom (FIPA

Contract-Net-like) protocol.

51

No loss of information

The system should guarantee that requests never get lost and will some time in the future

be processed. Also, whatever will might happen, the contents of these requests should be

left unchanged.

Distribution

The program should be distributed in three separate applications. In particular:

• A server-like application for starting the DF.

• A desktop and mobile version of the Customer application to install in companies

that want to recycle.

• A mobile version of the Truck software to mount on the truck vehicles.

4.4 Features

There were things that were not initially thought of and not crucial to the system’s good

operation, but were later added on to give extra power and functionality to the system.

Queuing jobs

Every Truck maintains its own plan, that is a queue of future jobs it intends to execute.

The Truck is responsible to keep the plan in a sound state and not include any unreasoning

sequence of instructions. Besides adding jobs drawn by requests, it should have the ability

to proactively create jobs in agreement with its intentions.

Splitting requests

Requests, as we said earlier, include the paper quantity the customer is offering for recycle.

There is a possibility that this quantity exceeds the maximum capacity of even the largest

truck in the system, so it cannot be processed by one truck only. Moreover, there are

occasions where no truck’s current capacity is enough to fit the paper quantity.

In this sense, it comes natural to “break” the requests into smaller ones, that can be

processed by more agent trucks. The Customer issuing the request must decide on what

exactly the magnitude of this splitting should be.

52

Google Maps Integration

The Truck application should assist the actual driver of the vehicle with choosing the

shortest path along the job to follow; much like a GPS navigation system would do. Instead

of using paid, proprietary navigation software, we took advantage of the public web service

that Google offers, called Google Maps.

Despite being free, Google’s product is superior to other software, in the sense that

it has a global geographic information coverage. Otherwise, you would have to load the

necessary maps into your GPS. This gives to our system the ability to operate on all places

Google Maps has information for.

For an added bonus, Google Maps gives nearly-live traffic data for some popular cities.

In this way, the recycling operation gains a lot in speed and the service availability increases.

GUI

The implementation phase was followed by heavy testing, where we constructed and ran

custom artificial cases and compared their results against optimal behaviours of an ideal

system. This process was somewhat cumbersome, so we decided to build a graphical

extension to the system to better inspect/monitor the rationality behind “its” decisions.

The GUI we came up with draws, in real-time, a panoramic view of all the logged-in

agents of the system and their particular actions. We caught, this way, many bugs and

logical errors.

To provide a great user-experience to the clients, being a Truck driver or a Customer, we

transformed the previous monitoring application to a web frontend for better interacting

with the underlying software.

4.5 Design

The system offers two distinct services, namely the Registry and the Recycling Service.

Although we picture them separately, the truth is that they very much depend on each

other.

53

4.5.1 Registry Service

What follows, is a Message Sequence Chart that illustrates a common case found during

a Registration interaction. We have two agents, one Truck and one Customer agent, that

sequentially – we did that for illustrative purposes, it could as well be done concurrently –

try to authenticate and enter the system. At the end, we can see that the customer tries

to register a second time, but the system handle this discrepancy correctly.

Truck

Server

DF

Server

Customer

Server

start
client

login
client

subscribe

ok,subscribed

start
client

login
client

subscribe

ok,subscribed

login
client

subscribe

error,already_subscribed

msc Registry Service

54

4.5.2 Recycling Service

The figure portrays a canonical negotiation between a Customer initiating the recycling operation and a Winner-Truck.

DF

Server

Truck

Server

Truck

Driver

Truck

Responder

Customer

Server

Customer

Initiator

recycle
client start

list_trucks
TrucksList

cfp
cfp

cfp
cfp

start
cfp

get_state
state

propose
propose

refuse
· · ·

accept_proposal
add_goal

goal_added
run_job

step_done...
job_done

done
inform

update_value

msc Recycling Service

55

4.6 Implementation

We have covered everything we need to implement our program. The system can be split

into three different OTP Applications that we describe below.

4.6.1 DF

The DF is a key-ingredient component of the system, for the simple reason that it acts as

the sole entry point to the system’s “world”.

Every agent that wants to become a member of this system has to first “talk” to the

DF, giving him some user credentials and getting back an authorization. In this way, we

can say that the DF works as the central authority of the system.

The DF stores some extra information about the live state of every online agent with

the goal to provide a graphical system-monitoring service.

Another operation that the DF is capable of, is to inform agents about the existence

of other agents inside the system. This is used, mainly, by the Customer agents to send

their Recycling requests over all subscribed Trucks.

In a possible crash of the DF application, the subscribed agents will still be capable to

interact with each other, however no new agent could log in to the system.

Finally, one important thing that should be mentioned, is that since the DF is the entry

point of the system, the node location that the DF is running on, should be known by all

the agents prior to subscribing to the system.

Supervision tree

df_app

df_sup

df_web df df_db

Database connection

Figure 4.1: The Supervision tree of the DF application

56

Lets examine briefly some of the functionality of the modules that form the DF.

df_db

We naturally have to store somewhere the logged on agents along with some information

about them. We chose to use, for this purpose, the Erlang Term Storage (ETS), which

is a mechanism to store items in memory and access them in constant time. It can be

described as a fast but very primitive data store. It is packaged inside the standard Erlang

distribution, so we didn’t introduce any new dependency.

ETS has some extra options, such as disk saving or concurrent access to the database,

but the directory registry does not require any persistency nor any concurrency, so we left

them out.

Besides the classic create_table, insert, delete and member operations, which are

built on top of the ets library API, there are two extra functions: the list_trucks and

list_all, which are, as we will see shortly after, indirectly called by the agents to get

“acquainted” with each other.

df

The df module mainly acts as the server-frontend to the database. It is implemented by a

gen_server behaviour that handles requests, such as:

subscribe

Log in to the system requires from the agent to state its type (Customer or Truck),

its current geographical position and its paper value. The DF also tracks the location

of the node where the request came from and does a mandatory check to see if any

agent with the same node name has already logged in. If not, he gives authorization.

unsubscribe

The agent casts a request whenever he wants to log out of the system.

update

The agent is responsible to provide near live data about his current state. This is

done by periodically sending messages to the DF by casting an update.

list_trucks & list_all

These are the requests the agents send to the DF, where they get “translated” to the

corresponding function calls of the df_db module.

57

df_web

The df_web module implements the server part of the Monitoring Web Interface. It wraps

a Misultin1 server around an OTP gen_server. Misultin is an Erlang library for building

fast lightweight HTTP(S) servers.

What is happening during monitoring, is that the client opens a Google Maps frame

and makes an in-browser long-polling AJAX request to the df_web server. Our server

processes this request, fetches all real-time agent data, transforms them into JSON objects

and ultimately feeds them back to the client’s browser to update the map. This procedure

is repeated in short intervals.

df_sup

The root supervisor of the application, spawns and monitors the two server processes, the

main df server and the supplementary df_web server. If any of them crashes, the supervisor

will restart it using a one_for_one restart strategy.

df_app

Except the previously described modules, the application bundles also an open-source

JSON encoder/decoder library written in Erlang, called jsonerl. It is used by the web

server to encode the agent data.

4.6.2 Customer

The Customer application should be distributed to the companies that take part in the

recycling process. There exist equivalent desktop and mobile versions of the application

software.

1https://github.com/ostinelli/misultin

58

https://github.com/ostinelli/misultin

Supervision tree

This simple supervision tree illustrates the simplicity of its model behaviour:

customer_app

customer_sup

customer_web customer

initiator1 initiatorn
· · ·

Link with

responder1

Link with

respondern

Figure 4.2: The Supervision tree of the Customer application

customer

The customer is an instance of the gen_server behaviour. What it basically does is that

it stores the agent attributes and preferences while providing a public API to access or

modify them.

Besides storing values, its main duty is to trigger a new contract-net negotiation upon

receiving a recycle command from the client. From now on, when we use the word “client”,

we mean the person that is operating the machine (in this case the company employee). The

server spawns a new customer_initiator process, that will start and manage a conversation

with the Trucks.

The customer server is totally independent of the initiator’s thread of execution. If the

initiator goes down or a failure happens in the established conversation, the server remains

unaffected. Built upon this characteristic, the server can spawn as many initiators as he

wants based on the “stimulation” he receives from the client.

Unlike the short lifetime span of an initiator, the customer process will stay as long as

the application is running.

59

customer_initiator

The initiator module is, somewhat, the “half” implementation of the Contract-Net protocol.

The other half is implemented in the Truck application. The nature of this protocol is not

at all like a one-pass communication, but requires successive steps of interaction. That is

the reason why we chose to model it in a gen_fsm behaviour. These communicative steps

are essentially the transition states of the FSM.

We picked up two snippets of code for a showcase:
send_acceptances(BestProposer, Proposers) ->

gen_fsm:send_event(BestProposer, accept_proposal),

link(BestProposer),

lists:foreach(fun (T) -> gen_fsm:send_event(T, reject_proposal) end,

lists:delete(BestProposer,Proposers)).

In this piece of code, we can observe the functional aspects of the language. First, we

send an ACCEPT_PROPOSAL message to the Winner-Truck, but we do not forget to

link with it. A link with another process can be thought of as a “bidirectional monitor”. If

any of the linked processes exits abnormally, all other processes in the linked chain will exit

too. An abnormal exit could be signaled by a system failure or a network disconnection.

Last, we send a REJECT_PROPOSAL to the rest of the proposers, mapping a function

over their list.

Next, we can see how the splitting of the Call-For-Proposal (CFP) message is done.

The break_cfp function takes as input the current contract and breaks it in half, spawning

two new separate initiators to start negotiating. After spawning them, the initiator itself

stops. Notice, that we have put a threshold on the size of the splitting; if the quantity is

below 1kg, the initiator should instead reset. This decision was made to avoid excessive

meaningless splitting of CFPs.
break_cfp(_Contract = {Position,Value}) ->

case Value > 1 of

true ->

start({Position, Value/2}), % start 2 new inititiators

start({Position, Value/2});

false ->

start({Position, Value}) % small quantity, don’t break, just reset

end,

{stop, normal, []}.

60

customer_web

The customer_web server is derived from the equivalent df_web implementation. It adds

some GUI tools and buttons for the client to operate on.

customer_sup

The supervisor upon starting, will spawn only the web frontend of the application; the

client himself should press the Login button to state confirmation. After that, the web

server will dynamically add the customer process to the supervision tree by calling:

supervisor:start_child(customer_sup, CustomerServer)

customer_app

There is not really anything new to say about this application, except that we wrote a lot

of metafiles that we put inside the priv/ directory. These were static html files, that the

customer_web process was serving.

What it came to be a surprise is that, with the technologies we used to build our system,

we didn’t have to implement two distinct versions of the same application (one desktop

and one mobile). With little to no change, we can make the application run wherever we

have an Erlang VM to run on.

4.6.3 Truck

The Truck is the third and last component of the system. This software must be installed

on a mobile device running inside the truck vehicle. The application agent should act as

an assistant for the driver.

61

Supervision tree

truck_app

truck_sup

truck_driver truck

responder1 respondern
· · ·

Link with

initiator1

Link with

initiatorn

Figure 4.3: The Supervision tree of the Truck application

truck

Much like the customer main server, the truck server is responsible for storing all the agent

attributes in its internal state, giving a client API to access them. This API is again built

around the gen_server behaviour.

The truck server is listening for incoming CFP requests from the customers. For every

CFP delivered, the server is spawning a new truck_responder process, passing to it the

CFP message, just as it was received.

We can have many responders negotiating and bidding in parallel without affecting the

truck server. However, in some situations, conflicts can arise and we have to deal with

them in an effective manner.

truck_responder

This gen_fsm behaviour complements the left out part of the Contract-Net implemen-

tation. After the behaviour’s instantiation, the responder process receives a Recycling

request (a CFP message) and decides if he can sometime in the future fulfill it.

62

If he is willing to carry out this request, he responds with a Bid, that is a PROPOSE

performative, which contains the Estimated Time Arriving (ETA), or to put it differently,

the Estimated Time to Accomplish the goal.

Otherwise, if he does not feel like committing to the request, because maybe the quan-

tity exceeds his maximum or current capacity, or the request is incompatible with his

constructed plan, the responder should send back a REFUSE message, stating the reason for

doing so.

After the bidding phase passes, the Customer will issue back the results by sending

outcome messages to all the Bidders. If the responder receives a REJECT_PROPOSAL, he

realizes he was not the Best Bidder and having nothing else to do, he gracefully dies.

On the other hand, if the responder receives an ACCEPT_PROPOSAL, this essentially

means he represents a Winner-Truck. From now on, the Customer believes that the Winner

is committed to get the job done.

In a typical situation, this assigned job will be added to the end of the plan/queue and

will eventually be picked up and executed by the driver behaviour, sometime later in the

future. When the job is finished, the truck_responder will signal a INFORM performative

back to the Customer and stop execution.

However, there exist some corner cases, where the responder should send a FAILURE

message to the customer_initiator, to express that he does not believe anymore that he can

carry out the job. Warning: this is different than sending an EXIT message, signaling an

abnormal behaviour of the truck’s execution, such as a network error or a system crash. In

a FAILURE situation, what happens is that although the Truck is in a “healthy” condition,

some conflicts have arose that prevent it from acting normally. This is attributed to a

“race condition” happening in that particular moment. Consider this case:

Two responders of the same Truck are bidding for two different recycling requests at

the same time. Their bids are a computed estimation for completing the tasks based on

their current future plan. If they both receive an ACCEPT_PROPOSAL, from then on the

truck is committed to fulfill both jobs. However, since these jobs cannot execute in parallel

and must be run in a sequence, one job is going to be scheduled for later than that it was

supposed to be.

In this way, even though both jobs would, in the end, execute successfully, one respon-

der, somehow, would have lied about its ETA. In our design, this “liar”-responder must

send a FAILURE to the Customer to “let the truth shine”.

63

truck_driver

The truck_driver is, how its name suggests, responsible for guiding the vehicle inside the

city roads. Like the truck behaviour, he is also a singleton gen_server process, which

means that it is a unique instance to the program and stays as long as the application is

running.

In a production environment, this module is not going to be necessary. We use it only

for simulating purposes. When the system is going to deploy, the truck_driver module

can safely be removed.

Its main functionality is pictured in this function:
Run_step = fun (Step = { _ , Duration}) ->

timer:sleep(round(timer:seconds(Duration)*?PROG_SPEED)),

truck:step_done(Step)

end,

The driver pops the next step from the job, sleeps for a virtual amount of time necessary

to take the step, and tells the truck server to update its position. For having a, somewhat,

objective simulation of the system, we added again some virtual pickup steps, where the

truck_driver spends some time to load the truck, proportionally to the paper amount.

gmaps

This module simply contains some XML parsing functionality, based on the xmerl XML

parser, which comes with the standard Erlang distribution.

It provides, all and all, three functions for issuing Google Maps requests and parsing

their results: compute_eta, compute_steps and compute_pickup.

truck_sup

The truck_sup supervisor will spawn and manage the two main servers, the truck process

and the truck_driver process. This time, we use the one_for_all restart strategy, for the

reason that these two processes very much depend on each other.

truck_app

The truck application contains all the previously described modules and nothing more.

64

4.7 Testing

Throughout the development phase of the system we did systematically run debugging

tools to correct some common bugs found. Difficult to catch were the race conditions

discussed earlier.

After that and when the program reached a usable enough state, we conducted a series

of tests to establish that our system’s model is foolproof. The first thing we did, was

to instantiate a list of different agents (trucks and customers) and enter them into our

system. Then we designed some test cases with arbitrary data and attributes around these

particular agents. We solved ourselves these cases on paper and the solutions took the

form of blueprints we later tried to match against.

For the small-size cases everything went very well, however for the larger ones we ran

into some problems. It was hard to construct cases with many agents, but even harder

was to trace the results of the testing. So we decided to build a graphical interface that

will allow us to inspect in real-time the overall progress of the system. This interface later

came to be the Monitoring GUI of our program.

In the figure that follows, you can see a simple test case taking place with 3 truck and

6 customer agents.

65

Chapter 5

Conclusions

Combining the MultiAgent theory with the concurrency & distribution mechanisms of the

Erlang language, we implemented a functional production-capable MultiAgent system for

the management of the recycling process.

We strongly believe that the expressiveness, the robustness and the fault-tolerance

are some of the most important qualities that a MultiAgent system should meet. And,

although Erlang is not specifically classified as a platform for designing such systems, we

think that it does have the features required to base upon your very own Agent platform

in a simple and elegant fashion.

5.1 Future Work

Some potential features of the system, that we were initially come up with, ultimately

missed the final program, because, in that time, they seem to be very time-consuming or

hard to implement. Others “came late to the party”, so we did not want to interrupt our

development progress and left them out.

The most interesting ones:

Dynamic replanning & rescheduling

Every truck agent maintains its own plan that, even though it is possible to ap-

pend/queue jobs in it, you cannot say that it is very dynamic. A dynamic plan

would in real time sort and prioritize its jobs, keeping them always in a consistent

state. In this way, we could build a minimal overall travel path of jobs.

66

Convergence

Lets examine the case where we have a group of customers closely to each other and

one sole customer settled in a rather far destination. The truck that will “win” this

distant goal, will remain idle after fulfilling it, because in consequent requests he will

constantly lose.

If the truck agent, however, could recognize such situations, it would not stay inactive,

but try to approach the group of customers, therefore increasing its performance and

success rate.

Better Splitting

Committing to the KISS (Keep It Simple, Stupid) philosophy, we strived to keep

our system’s design and implementation relatively easy and straightforward. With

that in mind, a large recycling request just splits in half, creating two more requests

that will be processed. Thus, we can say that our splitting algorithm is not that

“intelligent”.

We could instead take full advantage of the refuse reasons and devise an algorithm,

that would break a request into as few pieces as possible, necessary to accomplish the

entire goal. In this way, we could gain a lot in availability and increase the overall

performance of the system.

Switch from ETS to Mnesia

The database backend of our DF application relies on the Erlang Term Storage (ETS),

a somewhat simple storage mechanism, yet very fast. If we, however, replaced ETS

with a Mnesia database, we could exploit the fault-tolerance and distribution powers

that come for free with the Mnesia system.

There would be some replicated instances of the DF database, where in a possible

failure of the main server, a slave instance would take action (failover technique) and

become itself the master server. The system would continue to work just fine and its

users would not notice a thing.

More testing

Even though we ran a great amount of tests and covered the most common cases, we

can certainly use more of it. This would ensure that the system “thinks” and works

as expected to.

67

Benchmark reports

Excessive stress-testing of the program – how well it performs under extreme cases

of high load – would yield some interesting results about the real limitations of the

system. Built upon that, we can explore new patterns of performance optimization.

Use it in a real environment

If we had the opportunity to deploy in a real-world environment, we could experience,

from first hand, the patterns and procedures that emerge “in the wild”. We could

also examine how the user interacts with such applications and fine-tune them, so as

to become more user-friendly.

Finally, our program would transition from merely being a production-capable future

application to a fully production-ready system.

68

Bibliography

[1] U.S. Environmental Protection Agency. Recycling.

http://www.epa.gov/osw/conserve/rrr/recycle.htm, May 2010.

[2] Gul Agha. Actors: a model of concurrent computation in distributed systems. MIT

Press, Cambridge, MA, USA, 1986.

[3] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic

Bookshelf, July 2007.

[4] Joe Armstrong and To Helen. Making reliable distributed systems in the presence of

software errors, 2003.

[5] Niclas Axelsson. Erlang for the android platform.

http://www.burbas.se/artiklar/erlang-for-the-android-plattform/, Novem-

ber 2010.

[6] Francesco Cesarini and Simon Thompson. Erlang Programming. O’Reilly Media, Inc.,

1 edition, June 2009.

[7] FIPA. Fipa contract net interaction protocol specification.

http://www.fipa.org/specs/fipa00029/SC00029H.html.

[8] James Hague. How to crash erlang. http://prog21.dadgum.com/43.html, June

2009.

[9] Martin Logan, Eric Merritt, and Richard Carlsson. Erlang and OTP in Action. Man-

ning, November 2010.

[10] The Guides Network. Recycling is important.

http://www.recycling-guide.org.uk/importance.html, 2010.

69

http://www.epa.gov/osw/conserve/rrr/recycle.htm
http://www.burbas.se/artiklar/erlang-for-the-android-plattform/
http://www.fipa.org/specs/fipa00029/SC00029H.html
http://prog21.dadgum.com/43.html
http://www.recycling-guide.org.uk/importance.html

[11] Local Union of Korinthia. Paper recycling and its meaning.

http://www.anakyklosi.com.gr/site.php?&file=pages.xml&catid=44, 2006.

[12] Ted Patrick. Recycling. http://ted.onflash.org/2008/01/why-erlang.php, Jan-

uary 2008.

[13] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (2nd Edi-

tion). Prentice Hall series in artificial intelligence. Prentice Hall, 2 edition, December

2002.

[14] Jennifer Spenader. Speech act theory, introduction to semantics.

http://odur.let.rug.nl/~spenader/public_docs/speech_acts_groningen_NOV.pdf,

November 2004.

[15] Leon S. Sterling and Kuldar Taveter. The Art of Agent-Oriented Modeling. The MIT

Press, 2009.

[16] Katia P. Sycara. Multiagent systems. AIMag, 12, 1998.

[17] Ulf Wiger. Erlang OTP. http://www.slideshare.net/nivertech/erlang-otp/,

December 2003.

[18] Wikipedia. Recycling. http://en.wikipedia.org/wiki/Recycling.

[19] Michael Wooldridge. An Introduction to MultiAgent Systems. Wiley, 2nd edition, July

2009.

70

http://www.anakyklosi.com.gr/site.php?&file=pages.xml&catid=44
http://ted.onflash.org/2008/01/why-erlang.php
http://odur.let.rug.nl/~spenader/public_docs/speech_acts_groningen_NOV.pdf
http://www.slideshare.net/nivertech/erlang-otp/
http://en.wikipedia.org/wiki/Recycling

	Introduction
	Environmental Terms
	Recycling
	Reusing

	Problem
	Motivation
	Room for improvement
	Technological advance
	Approach

	Multi-agent Systems
	Intelligent Agents
	What is an Agent
	Agent Environments

	MultiAgent Systems
	Understanding
	Communication
	Cooperation
	Coordination

	The Foundation for Intelligent, Physical Agents
	Conclusion

	Erlang Programming
	Introduction
	History
	Describing the Language
	Special Features
	Case Studies

	The Basics
	Datatypes
	Pattern Matching
	Functions
	Modules

	Sequential Erlang
	Conditional Constructs
	Guards
	Tail-recursion

	Concurrent Programming
	Process
	Message Passing
	Timeouts
	Registered Processes
	Concurrency Pitfalls

	Error Handling
	Distributed Erlang
	Nodes
	Communication
	Security
	rpc
	epmd

	Introduction to OTP
	Server
	FSM
	Supervisor
	Application

	Conclusion

	System Analysis
	Overview
	Modeling
	Specifications
	Features
	Design
	Registry Service
	Recycling Service

	Implementation
	DF
	Customer
	Truck

	Testing

	Conclusions
	Future Work

