
A short introduction to operating systems

Mark Burgess

August 23, 1999



Contents

1 What is an operating system? 6

1.1 Key concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Hierarchies and black boxes . . . . . . . . . . . . . . . . . 9

1.1.2 Resources and sharing . . . . . . . . . . . . . . . . . . . . 10

1.1.3 Communication, protocols, data types . . . . . . . . . . . 11

1.1.4 System overhead . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.5 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 The CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.3 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.4 Interrupts, traps, exceptions . . . . . . . . . . . . . . . . . 14

1.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Resource management . . . . . . . . . . . . . . . . . . . . 14

1.3.2 Spooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.3 System calls . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.4 Basic command language . . . . . . . . . . . . . . . . . . . 15

1.3.5 Filesystem . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.6 Multiple windows and screens . . . . . . . . . . . . . . . . 16

2 Single-task OS 18

2.1 Memory map and registers . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Bu�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.3 Synchronous and asynchronous I/O . . . . . . . . . . . . . 27

2.3.4 DMA - Direct Memory Access . . . . . . . . . . . . . . . . 27

1



3 Multi-tasking and multi-user OS 29

3.1 Competition for resources . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Users - authentication . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Privileges and security . . . . . . . . . . . . . . . . . . . . 29

3.1.3 Tasks - two-mode operation . . . . . . . . . . . . . . . . . 30

3.1.4 I/O and Memory protection . . . . . . . . . . . . . . . . . 30

3.1.5 Time sharing . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Kernel and shells - layers of software . . . . . . . . . . . . . . . . 33

3.4 Services: daemons . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Multiprocessors { parallelism . . . . . . . . . . . . . . . . . . . . . 34

4 Processes and Thread 36

4.1 Key concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Naming conventions . . . . . . . . . . . . . . . . . . . . . 36

4.1.2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.3 Scheduling hierarchy . . . . . . . . . . . . . . . . . . . . . 39

4.1.4 Runs levels - priority . . . . . . . . . . . . . . . . . . . . . 39

4.1.5 Context switching . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.6 Interprocess communication . . . . . . . . . . . . . . . . . 42

4.2 Creation and scheduling . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Creating processes . . . . . . . . . . . . . . . . . . . . . . 43

4.2.2 Process hierarchy: children and parent processes . . . . . . 43

4.2.3 Unix: fork() and wait() . . . . . . . . . . . . . . . . . . . . 44

4.2.4 Process states . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.5 Queue scheduling . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.6 Round-robin scheduling . . . . . . . . . . . . . . . . . . . 49

4.2.7 CPU quotas and accounting . . . . . . . . . . . . . . . . . 50

4.3 Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Heavy and lightweight processes . . . . . . . . . . . . . . . 50

4.3.2 Why use threads? . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.3 Levels of threads . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.4 Symmetric and asymmetric multiprocessing . . . . . . . . 53

4.3.5 Example: POSIX pthreads . . . . . . . . . . . . . . . . . . 53

4.3.6 Example: LWPs in Solaris 1 . . . . . . . . . . . . . . . . . 58

4.4 Synchronization of processes and threads . . . . . . . . . . . . . . 60

4.4.1 Problems with sharing for processes . . . . . . . . . . . . . 60

4.4.2 Serialization . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.3 Mutexes: mutual exclusion . . . . . . . . . . . . . . . . . . 62

2



4.4.4 User synchronization: �le locks . . . . . . . . . . . . . . . 63

4.4.5 Exclusive and non-exclusive locks . . . . . . . . . . . . . . 64

4.4.6 Critical sections: the mutex solution . . . . . . . . . . . . 65

4.4.7 Flags and semaphores . . . . . . . . . . . . . . . . . . . . 66

4.4.8 Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Deadlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.1 Cause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.2 Prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.3 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.4 Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Memory and storage 73

5.1 Logical and Physical Memory . . . . . . . . . . . . . . . . . . . . 73

5.1.1 Physical Address space . . . . . . . . . . . . . . . . . . . . 73

5.1.2 Word size . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.3 Paged RAM/ROM . . . . . . . . . . . . . . . . . . . . . . 74

5.1.4 Address binding { coexistence in memory . . . . . . . . . . 74

5.1.5 Shared libraries . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.6 Runtime binding . . . . . . . . . . . . . . . . . . . . . . . 77

5.1.7 Segmentation - sharing . . . . . . . . . . . . . . . . . . . . 80

5.1.8 The malloc() function . . . . . . . . . . . . . . . . . . . . 82

5.1.9 Page size, fragmentation and alignment . . . . . . . . . . . 83

5.1.10 Reclaiming fragmented memory (Tetris!) . . . . . . . . . . 85

5.2 Virtual Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Paging and Swapping . . . . . . . . . . . . . . . . . . . . . 85

5.2.2 Demand Paging - Lazy evaluation . . . . . . . . . . . . . . 86

5.2.3 Swapping and paging algorithms . . . . . . . . . . . . . . 87

5.2.4 Thrashing . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Disks: secondary storage . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.1 Physical structure . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.2 Device drivers and IDs . . . . . . . . . . . . . . . . . . . . 94

5.3.3 Checking data consistency and formatting . . . . . . . . . 94

5.3.4 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.5 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.6 Stripes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Disk Filesystems . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4.1 Hierachical �lesystems and links . . . . . . . . . . . . . . . 100

5.4.2 File types and device nodes . . . . . . . . . . . . . . . . . 102

3



5.4.3 Permissions and access . . . . . . . . . . . . . . . . . . . . 103

5.4.4 File system protocols . . . . . . . . . . . . . . . . . . . . . 103

5.4.5 Filesystem implementation and storage . . . . . . . . . . . 105

5.4.6 The UNIX ufs �lesystem . . . . . . . . . . . . . . . . . . . 106

6 Networks: Services and protocols 112

6.1 Services: the client-server model . . . . . . . . . . . . . . . . . . . 113

6.2 Communication and protocol . . . . . . . . . . . . . . . . . . . . 114

6.3 Services and Ports . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 UNIX client-server implementation . . . . . . . . . . . . . . . . . 116

6.4.1 Socket based communication . . . . . . . . . . . . . . . . . 116

6.4.2 RPC services . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5 The telnet command . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.6 X11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.7 html: hypertext markup language . . . . . . . . . . . . . . . . . . 121

7 TCP/IP Networks 122

7.1 The protocol hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 122

7.1.1 The OSI model . . . . . . . . . . . . . . . . . . . . . . . . 122

7.1.2 Data encapsulation . . . . . . . . . . . . . . . . . . . . . . 124

7.2 The internet protocol family . . . . . . . . . . . . . . . . . . . . . 125

7.2.1 udp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.2.2 tcp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3 The physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3.1 Network connectivity . . . . . . . . . . . . . . . . . . . . . 128

7.3.2 Ethernet addresses . . . . . . . . . . . . . . . . . . . . . . 130

7.4 Internet Addresses and Routing . . . . . . . . . . . . . . . . . . . 130

7.4.1 IP addresses, networks and domain names . . . . . . . . . 130

7.4.2 Netmask and broadcast address . . . . . . . . . . . . . . . 131

7.4.3 Routers and gateways . . . . . . . . . . . . . . . . . . . . 132

7.5 Network Naming services . . . . . . . . . . . . . . . . . . . . . . . 133

7.5.1 The Domain Name Service . . . . . . . . . . . . . . . . . . 133

7.5.2 Network Information Service . . . . . . . . . . . . . . . . . 134

7.6 Distributed Filesystems . . . . . . . . . . . . . . . . . . . . . . . . 135

7.6.1 NFS - the network �lesystem . . . . . . . . . . . . . . . . 135

7.6.2 AFS - the andrew �lesystem . . . . . . . . . . . . . . . . . 136

7.6.3 DCE - the distributed computing environment . . . . . . . 136

4



8 Security: design considerations 138

8.1 Who is responsible? . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.2 Passwords and encryption . . . . . . . . . . . . . . . . . . . . . . 139

8.2.1 UNIX passwords . . . . . . . . . . . . . . . . . . . . . . . 139

8.2.2 Bad passwords . . . . . . . . . . . . . . . . . . . . . . . . 141

8.3 Super-user, or system administrator . . . . . . . . . . . . . . . . . 141

8.3.1 Network administration . . . . . . . . . . . . . . . . . . . 142

8.3.2 Setuid programs in unix . . . . . . . . . . . . . . . . . . . 143

8.4 Backups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.5 Intruders: Worms and Viruses . . . . . . . . . . . . . . . . . . . . 145

8.5.1 Back doors . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.6 Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.7 Public and Private Keys . . . . . . . . . . . . . . . . . . . . . . . 146

5



Chapter 1

What is an operating system?

An operating system is a layer of software which takes care of technical aspects

of a computer's operation. It shields the user of the machine from the low-

level details of the machine's operation and provides frequently needed facilities.

There is no universal de�nition of what an operating system consists of. You can

think of it as being the software which is already installed on a machine, before

you add anything of your own. Normally the operating system has a number

of key elements: (i) a technical layer of software for driving the hardware of the

computer, like disk drives, the keyboard and the screen; (ii) a �lesystem which

provides a way of organizing �les logically, and (iii) a simple command language

which enables users to run their own programs and to manipulate their �les

in a simple way. Some operating systems also provide text editors, compilers,

debuggers and a variety of other tools. Since the operating system (OS) is in

charge of a computer, all requests to use its resources and devices need to go

through the OS. An OS therefore provides (iv) legal entry points into its code for

performing basic operations like writing to devices.

Operating systems may be classi�ed by both how many tasks they can perform

`simultaneously' and by how many users can be using the system `simultaneously'.

That is: single-user or multi-user and single-task or multi-tasking. A multi-user

system must clearly be multi-tasking. The table below shows some examples.
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OS Users Tasks Processors

MS/PC DOS S S 1

Windows 3x S QM 1

Macintosh System 7.* S QM 1

Windows 9x S M* 1

AmigaDOS S M 1

hline MTS M M 1

UNIX M M n

VMS M M 1

NT S/M M n

BeOS (Hamlet?) S M n

The �rst of these (MS/PC DOS/Windows 3x) are single user, single-task systems

which provide a library of basic functions called the BIOS. Windows also includes

a windowing library. These are system calls which write to the screen or to disk

etc. Although all the operating systems can service interrupts, and therefore

simulate the appearance of multitasking in some situations, the PC environment

cannot be thought of as a multi-tasking system in any sense. Only a single user

application can be open at any time.

The Macintosh system 7 can be classi�ed as single-user quasi-multitasking1.

That means that it is possible to use several user applications simultaneously.

A window manager can simulate the appearance of several programs running

simultaneously, but this relies on each program obeying speci�c rules in order

to achieve the illusion. The MacIntosh not a true multitasking system in the

sense that, if one program crashes, the whole system crashes. Windows 9x is

purported to be preemptive multitasking but most program crashes also crash

the entire system. This might be due to the lack of proper memory protection.

Either way the claim is confusing.

AmigaDOS is an operating system for the Commodore Amiga computer. It

is based on the UNIX model and is a fully multi-tasking, single-user system.

Several programs may be actively running at any time. The operating system

includes a window environment which means that each independent program has

a `screen' of its own and does not therefore have to compete for the screen with

other programs. This has been a major limitation on multi-tasking operating

systems in the past.

MTS (Michigan timesharing system) was the �rst time-sharing multi-user

1At the present time Apple are preparing a new operating system called NextStep or Rhap-

sody or Mac OS Server X which is based on BSD 4.3 Unix running on a Mach micro-kernel

and will run old MacIntosh software under emulation
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system2. It supports only simple single-screen terminal based input/output and

has no hierarchical �le system.

Unix is arguably the most important operating system today, and one which

we shall frequently refer to below. It comes in many forms, developed by di�erent

manufacturers. Originally designed at AT&T, UNIX split into two camps early

on: BSD (Berkeley software distribution) and system 5 (AT&T license). The

BSD version was developed as a research project at the university of Berkeley,

California. Many of the networking and user-friendly features originate from these

modi�cations. With time these two versions have been merged back together and

most systems are now a mixture of both worlds. Historically BSD Unix has been

most prevalent in universities, while system 5 has been dominant in business

environments. The trend during the last three years by Sun Microsystems and

Hewlett-Packard amongst others has been to move towards system 5, keeping only

the most important features of the BSD system. A standardization committee for

Unix called POSIX, formed by the major vendors, attempts to bring compatibility

to the Unix world. Here are some common versions of UNIX.

Unix Manufacturer Mainly BSD / Sys 5

BSD Berkeley BSD

SunOS (solaris 1) Sun Microsystems BSD/sys 5

Solaris 2 Sun Microsystems Sys 5

Ultrix DEC/Compaq BSD

OSF 1/Digital Unix DEC/Compaq BSD/sys 5

HPUX Hewlett-Packard Sys 5

AIX IBM Sys 5 / BSD

IRIX Silicon Graphics Sys 5

GNU/Linux Public Domain Posix (Sys V/BSD)

SCO unix Novell Sys 5

Note that the original BSD source code is now in the public domain. Unix is

generally regarded as the most portable and powerful operating system available

today by impartial judges, but NT is improving quickly. Unix runs on everything

from laptop computers to CRAY mainframes. It is particularly good at managing

large database applications and can run on systems with hundreds of processors.

Most Unix types support symmetric multithreaded processing and all support

simultaneous logins by multiple users.

2In Manitoba, Canada, the telephone system is also called MTS. The telephone system is

probably more advanced than the original MTS, and certainly faster!
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NT is a `new' operating system from Microsoft based on the old VAX/VMS

kernel from the Digital Equipment Corporation (VMS's inventor moved to Mi-

crosoft) and the Windows32 API. Initially it reinvented many existing systems,

but it is gradually being forced to adopt many open standards from the Unix

world. It is fully multitasking, and can support multiple users (but only one at a

time| multiple logins by di�erent users is not possible). It has virtual memory

and multithreaded support for several processors. NT has a built in object model

and security framework which is amongst the most modern in use.

The Be operating system, originally developed for a new multimedia computer

called the BeBox, is also new and is a fully multitasking OS. It is optimized for

multimedia and is now saleable software developed by Be.Com after the new

computer concept failed due to lack of �nancial backing. BeOS has proper mem-

ory protection but allows direct access to video memory (required for fast video

games). It also has virtual memory, is pre-emptive multitasking and is based on

a microkernel design. Is shares little with Unix except for a Bash shell, a POSIX

programming interface and about 150 Unix commands (including Perl).

1.1 Key concepts

Before discussing more of the details, let's review some key ideas which lie behind

the whole OS idea. Although these ideas may seem simple, you will do well to

keep them in mind later. Simple ideas often get lost amongst distracting details,

but it is important to remember that the ideas are simple.

1.1.1 Hierarchies and black boxes

A hierarchy is a way of organizing information using levels of detail. The phrase

high-level implies few details, whereas low-level implies a lot of detail, down in

the guts of things. A hierarchy usually has the form of a tree, which branches

from the highest level to the lowest, since each high-level object is composed of

several lower-level objects. The key to making large computer programs and

to solving di�cult problems is to create a hierarchical structure, in which large

high-level problems are gradually broken up into manageable low-level problems.

Each level works by using a series of `black boxes' (e.g. subroutines) whose inner

details are not directly visible. This allows us to hide details and remain sane as

the complexity builds up.

This is the single most important concept in computing! It is used repeatedly

to organize complex problems.
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Root Node

Child #1 Child #2 Child #3 Level 1

Level 2

Level 0

Figure 1.1: The hierarchy is the most important concept in computing.

1.1.2 Resources and sharing

A computer is not just a box which adds numbers together. It has resources

like the keyboard and the screen, the disk drives and the memory. In a multi-

tasking system there may be several programs which need to receive input or write

output simultaneously and thus the operating system may have to share these

resources between several running programs. If the system has two keyboards (or

terminals) connected to it, then the OS can allocate both to di�erent programs.

If only a single keyboard is connected then competing programs must wait for

the resources to become free.

Most multi-tasking systems have only a single central processor unit and yet

this is the most precious resource a computer has. An multi-tasking operating

system must therefore share cpu-time between programs. That is, it must work

for a time on one program, then work a while on the next program, and so on. If

the �rst program was left un�nished, it must then return to work more on that,

in a systematic way. The way an OS decides to share its time between di�erent

tasks is called scheduling.
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1.1.3 Communication, protocols, data types

The exchange of information is an essential part of computing. Suppose computer

A sends a message to computer B reporting on the names of all the users and

how long they have been working. To do this it sends a stream of bits across a

network. When computer B receives a stream of bits, it doesn't automatically

know what they mean. It must decide if the bits represent numbers or characters,

integers or 
oating point numbers, or a mixture of all of them. These di�erent

types of data are all stored as binary information { the only di�erence between

them is the way one chooses to interpret them.

The resolution to this problem is to de�ne a protocol. This is a convention

or agreement between the operating systems of two machines on what messages

may contain. The agreement may say, for instance, that the �rst thirty-two bits

are four integers which give the address of the machine which sent the message.

The next thirty-two bits are a special number telling the OS which protocol to

use in order to interpret the data. The OS can then look up this protocol and

discover that the rest of the data are arranged according to a pattern of

<name><time><name><time>...

where the name is a string of bytes, terminated by a zero, and the time is a four

byte digit containing the time in hours. Computer B now knows enough to be

able to extract the information from the stream of bits.

It is important to understand that all computers have to agree on the way

in which the data are sent in advance. If the wrong protocol is diagnosed, then

a string of characters could easily be converted into a 
oating point number {

but the result would have been nonsense. Similarly, if computer A had sent the

information incorrectly, computer B might not be able to read the data and a

protocol error would arise.

More generally, a protocol is an agreed sequence

of behaviour which must be followed.

For example, when passing parameters to functions in a computer program,

there are rules about how the parameter should be declared and in which order

they are sent. This is a simple example of a protocol. Protocols are an important

part of communication and data typing and they will appear in many forms

during our discussion of operating systems.
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1.1.4 System overhead

An operating system is itself a computer program which must be executed. It

therefore requires its own share of a computer's resources. This is especially

true on multitasking systems, such as UNIX, where the OS is running all the

time along side users' programs. Since user programs have to wait for the OS to

perform certain services, such as allocating resources, they are slowed down by

the OS3. The time spent by the OS servicing user requests is called the system

overhead. On a multi-user system one would like this overhead to be kept to a

minimum, since programs which make many requests of the OS slow not only

themselves down, but all other programs which are queuing up for resources.

In the UNIX C-shell (csh) environment, it is possible to �nd out the exact

fraction of time spent by the OS working on a program's behalf by using the time

function.

1.1.5 Caching

Caching is a technique used to speed up communication with slow devices. Usu-

ally the CPU can read data much faster from memory than it can from a disk or

network connection, so it would like to keep an up-to-date copy of frequently used

information in memory. The memory area used to do this is called a cache. You

can think of the whole of the primary memory as being a cache for the secondary

memory (disk).

Sometimes caching is used more generally to mean `keeping a local copy of

data for convenience'.

1.2 Hardware

Here we list the main hardware concepts.

1.2.1 The CPU

The CPU, or central processor unit is the heart and soul of every computer. This is

the part which does the work of executing machine instructions. Traditionally, it

is just one microprocessor with lots of pins to connect is to memory and devices

{ usually identi�able by being the largest chip. On modern machines, there

may be several CPUs which can work in parallel. Also VLSI or very large scale

3This is not really true of course { if they did not wait for the OS, then they would not be

able to continue executing at all!
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integration technology has made it possible to put very many separate processors

and memory into a single package, so the physical distinction between the CPU

and its support chips is getting blurred. Nevertheless, the CPU is still logically

separate from the memory and devices.

The CPU is driven by a `clock' or pulse generator. Each instruction com-

pletes in a certain number of `clock cycles'. Traditionally CPUs are based on

CISC (Complex Instruction Set Computing) architecture, where a single instruc-

tion takes one or more clock cycles to complete. A new trend is to build RISC

(Reduced Instruction Set Computing) processors which aim to be more e�cient

for a subset of instructions by using redundancy. These have simpler instructions

but can execute much more quickly, sometimes with several instructions per clock

cycle.

1.2.2 Memory

The primary memory is the most important resource a computer has. Since CPUs

are only made with instructions for reading and writing to memory, no programs

would be able to run without it. There are two types of memory: RAM - random

access memory, or read/write memory, which loses its contents when the machine

is switched o�, and ROM - read only memory, which never loses its contents unless

destroyed. ROM is normally used for storing those most fundamental parts of

the operating system which are required the instant a computer is switched on,

before it knows about disks etc.

1.2.3 Devices

The concepts of a device really has two parts. There is the hardware unit which

is connected to the machine, and there is the logical device which is a name given

by the OS to a legal entry point for talking to a hardware-device. When a user

writes to a logical device, the OS invokes a device driver which performs the

physical operations of controlling the hardware. For example, when writing to a

disk, the OS must control the movement of the read-write heads. When writing

to a printer, the OS places the information in a queue and services the request

when the printer becomes free.

Some common logical devices are: the system disks, the keyboard, the screen,

the printer and the audio device.

Disks and tapes are often called secondary memory or secondary storage.
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1.2.4 Interrupts, traps, exceptions

Interrupts are hardware signals which are sent to the CPU by the devices it is

connected to. These signals literally interrupt the CPU from what it is doing

and demand that it spend a few clock cycles servicing a request. For example,

interrupts may come from the keyboard because a user pressed a key. Then the

CPU must stop what it is doing and read the keyboard, place the key value

into a bu�er for later reading, and return to what it was doing. Other `events'

generate interrupts: the system clock sends interrupts at periodic intervals, disk

devices generate interrupts when they have �nished an I/O task and interrupts

can be used to allow computers to monitor sensors and detectors. User programs

can also generate `software interrupts' in order to handle special situations like

a `division by zero' error. These are often called traps or exceptions on some

systems.

Interrupts are graded in levels. Low level interrupts have a low priority,

whereas high level interrupts have a high priority. A high level interrupt can

interrupt a low level interrupt, so that the CPU must be able to recover from

several `layers' of interruption and end up doing what it was originally doing.

This is accomplished by means of a stack or heap4. Moreover, programs can of-

ten choose whether or not they wish to be interrupted by setting an interrupt

mask which masks out the interrupts it does not want to hear about. Masking

interrupts can be dangerous, since data can be lost. All systems therefore have

non-maskable interrupts for the most crucial operations.

1.3 Software

1.3.1 Resource management

In order to keep track of how the system resources are being used, an OS must

keep tables or lists telling it what is free an what is not. For example, data cannot

be stored neatly on a disk. As �les become deleted, holes appear and the data

become scattered randomly over the disk surface.

1.3.2 Spooling

Spooling is a way of processing data serially. Print jobs are spooled to the printer,

because they must be printed in the right order (it would not help the user if

the lines of his/her �le were liberally mixed together with parts of someone elses

4This is described more fully in the next chapter
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�le). During a spooling operation, only one job is performed at a time and other

jobs wait in a queue to be processed. Spooling is a form of batch processing.

Spooling comes from the need to copy data onto a spool of tape for storage.

It has since been dubbed Simultaneous Peripheral Operation On-Line, which

is a pretty lousy attempt to make something more meaningful out of the word

`spool' !

1.3.3 System calls

An important task of an operating system is to provide black-box functions for

the most frequently needed operations, so that users do not have to waste their

time programming very low level code which is irrelevant to their purpose. These

ready-made functions comprise frequently used code and are called system calls.

For example, controlling devices requires very careful and complex program-

ming. Users should not have to write code to position the head of the disk drive

at the right place just to save a �le to the disk. This is a very basic operation

which everyone requires and thus it becomes the responsibility of the OS. Another

example is mathematical functions or graphics primitives.

System calls can be thought of as a very simple protocol { an agreed way of

asking the OS to perform a service. Some typical OS calls are: read, write (to

screen, disk, printer etc), stat (get the status of a �le: its size and type) and

malloc (request for memory allocation).

On older microcomputers, where high level languages are uncommon, system

calls are often available only through assembler or machine code. On modern

systems and integrated systems like UNIX, they are available as functions in a

high level language like C.

1.3.4 Basic command language

Commands like

dir ; list files (DOS)

ls ; list files (UNIX)

cd ; change directory

copy file prn ; copy file to printer

myprog ; execute program `myprog'

constitute a basic command language. Every computer must have such a language

(except perhaps the Macintosh - yawn!). In microcomputer operating systems the
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command language is often built into the system code, whereas on larger systems

(UNIX) the commands are just executable programs like the last example above.

The command language deals typically with: �le management, process man-

agement and text editing.

1.3.5 Filesystem

In creating a system to store �les we must answer some basic questions.

� Should the �lesystem distinguish between types of �les e.g. executable �les,

text �les, scripts. If so how? One way is to use �le extensions, or a naming

convention to identify �les, like myprog.exe, SCRIPT.BAT, �le.txt. The

problem with this is that the names can be abused by users. If one tries

to execute a �le which is not meant to be executed, the result would be

nonsense and might even be dangerous to the point of crashing the system.

One way around this problem is to introduce a protocol or standard format

for executable �les, so that when the OS opens a �le for execution it �rst

checks to see whether the �le obeys the protocol. This method is used for

binary �les in UNIX, for instance.

� Protection. If several users will be storing �les together on the same disk,

should each user's �les be exclusive to him or her?

� Is a mechanism required for sharing �les between several users?

� A hierarchical �lesystem is a good starting point for organizing �les, but

it can be too restrictive. Sometimes it is useful to have a �le appear in

several places at one time. This can be accomplished with links. A link

is not a copy of a �le, but a pointer to where a �le really is. By making

links to other places in a hierarchical �lesystem, its 
exibility is increased

considerably.

1.3.6 Multiple windows and screens

Multitasking cannot be fully exploited if each user has only one output terminal

(screen). Each interactive program needs its own screen and keyboard5. There

are three solutions to this problem:

1. Several physical screens can be attached to the computer. This is expensive

and probably wasteful.

5Actually only one keyboard is needed because it is only possible to write one thing at a

time, but it is possible to read two things at the same time.
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2. Toggling between `logical screens'. By pressing a key on the keyboard

the user can switch between two di�erent images, which are separately

maintained in memory.

3. Window system.

The technology for the last of these solutions has only been available for a few

years. While it is clearly the best of the three (and can be combined with [1]), it

requires a considerable amount of memory and CPU power to implement. The

problem of overlapping windows requires there to be a manager which controls

the sharing of space on the screen. All of the graphics must be drawn and redrawn

continuously. The operating system must provide primitives for doing this.

We shall not consider windowing further in this text, but it is worth bearing in

mind that the principles are very similar to those of operating systems. Sharing

and management are the key concepts.

Note

Before proceeding, you should note that the design of operating systems is an

active area of research. There are no universal solutions to the issues that we

shall discuss, rather OS design must be thought of as a study of compromises.

Hopefully you will get a feel for this during the course of the tutorial.

Exercises

1. What are the key ingredients of an operating system?

2. What is the usefulness of system calls?

3. What is the di�erence between primary and secondary storage.

4. What is a logical device?

5. Should di�erent users be able to change one another's data? If so, under

what circumstances?

6. How do hardware devices send signals to the CPU?
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Chapter 2

Single-task OS

Before tackling the complexities of multi-tasking, it is useful to think about the

operation of a single-task OS without all the clutter that multi-tasking entails.

In a multi-task OS the features we shall discuss below have to be reproduced

N -times and then augmented by extra control structures.

2.1 Memory map and registers

The key elements of a single-task computer are shown in �gure 2.1. Roughly

speaking, at the hardware level a computer consists of a CPU, memory and a

number of peripheral devices. The CPU contains registers or `internal variables'

which control its operation. The CPU can store information only in the memory

it can address and in the registers of other microprocessors it is connected to.

The CPU reads machine code instructions, one at a time, from the memory and

executes them forever without stopping.

Here is a brief summary of the types of register a CPU has. Some micropro-

cessors have several of each type.

18



Register Purpose

Accumulator Holds the data currently being worked on.

Program counter Holds the address of the next instruction

to be executed

Index (addressing) registers Used to specify the address of data to be loaded into or

saved from the accumulator, or operated on in some way.

Stack pointer Points to the top of the CPUs

own hardware controlled stack.

Status register Contains status information after each instruction

which can be tested for to detect errors etc.

The memory, as seen by the CPU, is a large string of bytes starting with

address 0 and increasing up to the maximum address. Physically it is made up,

like a jigsaw puzzle, of many memory chips and control chips. mapped into the

diagram shown. Normally, because of the hardware design of the CPU, not all

of the memory is available to the user of the machine. Some of it is required for

the operation of the CPU.

The roughly distinguished areas in �gure 2.1 are

� Zero page: The �rst t `page' of the memory is often reserved for a special

purpose. It is often faster to write to the zero page because you don't have

to code the leading zero for the address { special instructions for the zero

page can leave the `zero' implicit.

� Stack: Every CPU needs a stack for executing subroutines. The stack is

explained in more detail below.

� User programs: Space the user programs can `grow into'.

� Screen memory: What you see on the screen of a computer is the image

of an area of memory, converted into colours and positions by a hardware

video-controller. The screen memory is the area of memory needed to de�ne

the colour of every `point' or `unit' on the screen. Depending on what kind

of visual system a computer uses, this might be one byte per character and

it might be four bytes per pixel!

� Memory mapped I/O: Hardware devices like disks and video controllers con-

tain smaller microprocessors of their own. The CPU gives them instructions

by placing numbers into their registers. To make this process simpler, these

device registers (only a few bytes per device, perhaps) are `wired' into the
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main memory map, so that writing to the device is the same as writing to

the rest of the memory.

� Operating system: The operating system itself is a large program which

often takes up a large part of the available memory.

Note that this �gure is very simpli�ed. It does not show, for instance, special

memory which might be located inside the devices or CPU. Such memory is

often used for caching. Also it does not show how the various components are

connected together by means of a high speed data bus.

2.2 Stack

A stack is a so-called last-in �rst-out (LIFO) data structure. That is to say {

the last thing to be placed on top of a stack, when making it, is the �rst item

which gets removed when un-making it. Stacks are used by the CPU to store

the current position within a program before jumping to subroutines, so that

they remember where to return to after the subroutine is �nished. Because of

the nature of the stack, the CPU can simply deposit the address of the next

instruction to be executed (after the subroutine is �nished) on top of the stack.

When the subroutine is �nished, the CPU pulls the �rst address it �nds o� the

top of the stack and jumps to that location.

Notice that the stack mechanism will continue to work even if the subroutine

itself calls another subroutine, since the second subroutine causes another stack

frame to be saved on the top of the stack. When that is �nished, it returns to

the �rst subroutine and then to the original program in the correct order.

On many older microcomputers and in many operating systems the stack is

allocated with a �xed size in advance. If too many levels of nested subroutines

are called, the stack can over
ow. Consider the following example code for a

stack.
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Operating system

Memory mapped I/O

Screen/display memory

User programs

Stack

Zero pages

Devices

Figure 2.1: A simple schematic memory map of a microcomputer. The order of

the di�erent segments of memory can vary depending on the system.

//

// A simple stack handler.

//

// Use the commands "push" and "pop" to push onto the stack and to pop

// "out" of the stack. The allocated stacksize is very small so that

// an overflow can occur if you push too far!! e.g. input

//

// push 23

// push 4

// pop

// push 678

// quit

//

// In a real stack handler the numbers would be the address of the next

// instruction to return to after completing a subroutine.

//

// The program is compiled with

//
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// g++ stack.C

//

// MB 1994

//

//*********************************************************************

#include <iostream.h>

#include <strstream.h>

#include <string.h>

//**********************************************************************

// Include file

//**********************************************************************

const int forever = 1;

const int stacksize = 10;

const int bufsize = 20;

//**********************************************************************

class Stack

{

public:

int stack[stacksize];

Stack();

void ShowStack();

void Push(int);

int Pop();

private:

int stackpointer;

};

//**********************************************************************

// Level 0

//**********************************************************************
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main ()

{ char input[bufsize];

char command[5];

int number, newnumber;

Stack s;

cout << "Stack demo\n\n";

s.ShowStack();

while (forever)

{

cout << "Enter command: ";

// Extract command

cin.getline(input,bufsize);

istrstream(input,sizeof(input)) >> command >> number;

// Interpret command

if (strcmp(command,"push") == 0)

{

s.Push(number);

}

else if (strcmp(command,"pop")==0)

{

newnumber = s.Pop();

}

else if (strcmp(command,"quit")==0)

{

break;

}

else

{

number = 0;

cout << "Bad command\n\n";

}

s.ShowStack();
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}

s.ShowStack();

}

//**********************************************************************

// Class Stack

//**********************************************************************

Stack::Stack()

{ int i;

stackpointer = 0;

for (i = 0; i < stacksize; i++)

{

stack[i] = 0;

}

}

//**********************************************************************

void Stack::Push (int n)

{

cout << "Pushing " << n << " on the stack\n";

if (stackpointer >= stacksize)

{

cerr << "Stack overflow!\n";

return;

}

stack[stackpointer] = n;

stackpointer++;

}

//**********************************************************************

int Stack::Pop ()
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{

if (stackpointer == 0)

{

cerr << "Stack underflow!\n";

return 0;

}

stackpointer--;

cout << "Popped " << stack[stackpointer] << " from stack\n";

return (stack[stackpointer]);

}

//**********************************************************************

void Stack::ShowStack ()

{ int i;

for (i = stacksize-1; i >= 0; i--)

{

cout << "stack[" << i << "] = " << stack[i];

if (i == stackpointer)

{

cout << " <<-- Pointer\n";

}

else

{

cout << endl;

}

}

}

In this example, only numbers are stored. At the hardware level, this kind of

stack is used by the CPU to store addresses and registers during machine-code

subroutine jumps. Operating systems also use software controlled stacks during

the execution of users' programs. High level languages subroutines can have local

variables which are also copied to the stack as one large stack frame during the
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execution of subroutines.

2.3 Input/Output

Input arrives at the computer at unpredictable intervals. The system must be

able to detect its arrival and respond to it.

2.3.1 Interrupts

Interrupts are hardware triggered signals which cause the CPU to stop what it is

doing and jump to a special subroutine. Interrupts normally arrive from hardware

devices, such as when the user presses a key on the keyboard, or the disk device

has fetched some data from the disk. They can also be generated in software by

errors like division by zero or illegal memory address.

When the CPU receives an interrupt, it saves the contents of its registers on

the hardware stack and jumps to a special routine which will determine the cause

of the interrupt and respond to it appropriately. Interrupts occur at di�erent

levels. Low level interrupts can be interrupted by high level interrupts. Interrupt

handling routines have to work quickly, or the computer will be drowned in

the business of servicing interrupts. For certain critical operations, low level

interrupts can be ignored by setting a mask (See also the generalization of this

for multiuser systems in chapter 4).

There is no logical di�erence between what happens during the execution of

an interrupt routine and a subroutine. The di�erence is that interrupt routines

are triggered by events, whereas software subroutines follow a prearranged plan.

An important area is the interrupt vector. This is a region of memory reserved

by the hardware for servicing of interrupts. Each interrupt has a number from

zero to the maximum number of interrupts supported on the CPU; for each

interrupt, the interrupt vector must be programmed with the address of a routine

which is to be executed when the interrupt occurs. i.e. when an interrupt occurs,

the system examines the address in the interrupt vector for that interrupt and

jumps to that location. The routine exits when it meets an RTI (return from

interrupt) instruction.

2.3.2 Bu�ers

The CPU and the devices attached to it do not work at the same speed. Bu�ers

are therefore needed to store incoming or outgoing information temporarily, while

it is waiting to be picked up by the other party. A bu�er is simply an area of
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memory which works as a waiting area. It is a �rst-in �rst-out (FIFO) data

structure or queue.

2.3.3 Synchronous and asynchronous I/O

To start an I/O operation, the CPU writes appropriate values into the registers

of the device controller. The device controller acts on the values it �nds in its

registers. For example, if the operation is to read from a disk, the device controller

fetches data from the disk and places it in its local bu�er. It then signals the

CPU by generating an interrupt.

While the CPU is waiting for the I/O to complete it may do one of two things.

It can do nothing or idle until the device returns with the data (synchronous

I/O), or it can continue doing something else until the completion interrupt ar-

rives (asynchronous I/O). The second of these possibilities is clearly much more

e�cient.

2.3.4 DMA - Direct Memory Access

Very high speed devices could place heavy demands on the CPU for I/O servicing

if they relied on the CPU to copy data word by word. The DMA controller

is a device which copies blocks of data at a time from one place to the other,

without the intervention of the CPU. To use it, its registers must be loaded with

the information about what it should copy and where it should copy to. Once

this is done, it generates an interrupt to signal the completion of the task. The

advantage of the DMA is that it transfers large amounts of data before generating

an interrupt. Without it, the CPU would have to copy the data one register-full at

a time, using up hundreds or even thousands of interrupts and possibly bringing

a halt to the machine!

Exercises

1. What is the program counter?

2. Explain why a stack is used to store local variables.

3. Some microprocessors (68000/Intel 386 upward) support multitasking in-

ternally. A separate stack is then needed for each process. How can this be

achieved?
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4. Write a program to create a stack (LIFO) which can store any number of

local variables for each subroutine. Hint: use a linked list for the stack and

for the variables.

5. Write a program to implement a bu�er (FIFO).

6. When a computer is �rst switched on, it executes a program called a boot-

strap program. This comes from the expression `to lift oneself by one's own

bootstraps'. The computer must begin to execute instructions and `get

going'. Find out for yourself, or speculate on how this takes place.

7. What is a stack-frame?

8. What is memory mapped I/O?
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Chapter 3

Multi-tasking and multi-user OS

To make a multi-tasking OS we need loosely to reproduce all of the features dis-

cussed in the last chapter for each task or process which runs. It is not necessary

for each task to have its own set of devices. The basic hardware resources of

the system are shared between the tasks. The operating system must therefore

have a `manager' which shares resources at all times. This manager is called the

`kernel' and it constitutes the main di�erence between single and multitasking

operating systems.

3.1 Competition for resources

3.1.1 Users - authentication

If a system supports several users, then each user must have his or her own

place on the system disk, where �les can be stored. Since each user's �les may

be private, the �le system should record the owner of each �le. For this to be

possible, all users must have a user identity or login name and must supply a

password which prevents others from impersonating them. Passwords are stored

in a cryptographic (coded) form. When a user logs in, the OS encrypts the typed

password and compares it to the stored version. Stored passwords are never

decrypted for comparison.

3.1.2 Privileges and security

On a multi-user system it is important that one user should not be able to in-

terfere with another user's activities, either purposefully or accidentally. Certain
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commands and system calls are therefore not available to normal users directly.

The super-user is a privileged user (normally the system operator) who has per-

mission to do anything, but normal users have restrictions placed on them in the

interest of system safety.

For example: normal users should never be able to halt the system; nor should

they be able to control the devices connected to the computer, or write directly

into memory without making a formal request of the OS. One of the tasks of the

OS is to prevent collisions between users.

3.1.3 Tasks - two-mode operation

It is crucial for the security of the system that di�erent tasks, working side by side,

should not be allowed to interfere with one another (although this occasionally

happens in microcomputer operating systems, like the Macintosh, which allow

several programs to be resident in memory simultaneously). Protection mecha-

nisms are needed to deal with this problem. The way this is normally done is to

make the operating system all-powerful and allow no user to access the system

resources without going via the OS.

To prevent users from tricking the OS, multiuser systems are based on hard-

ware which supports two-mode operation: privileged mode for executing OS in-

structions and user mode for working on user programs. When running in user

mode a task has no special privileges and must ask the OS for resources through

system calls. When I/O or resource management is performed, the OS takes over

and switches to privileged mode. The OS switches between these modes person-

ally, so provided it starts o� in control of the system, it will alway remain in

control.

� At boot-time, the system starts in privileged mode.

� During user execution, it is switched to user mode.

� When interrupts occur, the OS takes over and it is switched back to privi-

leged mode.

Other names for privileged mode are monitor mode or supervisor mode.

3.1.4 I/O and Memory protection

To prevent users from gaining control of devices, by tricking the OS, a mechanism

is required to prevent them from writing to an arbitrary address in the memory.

For example, if the user could modify the OS program, then it would clearly be
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possible to gain control of the entire system in privileged mode. All a user would

have to do would be to change the addresses in the interrupt vector to point to

a routine of their own making. This routine would then be executed when an

interrupt was received in privileged mode.

The solution to this problem is to let the OS de�ne a segment of memory for

each user process and to check, when running in user mode, every address that

the user program refers to. If the user attempts to read or write outside this

allowed segment, a segmentation fault is generated and control returns to the OS.

This checking is normally hard-wired into the hardware of the computer so that

it cannot be switched o�. No checking is required in privileged mode.

//******************************************************************

//

// Example of a segmentation fault in user mode

//

//******************************************************************

main() // When we start, we are by definition in user mode.

{ int *ptr;

ptr = 0; // An address guaranteed to NOT be in our segment.

cout << *ptr;

}

3.1.5 Time sharing

There is always the problem in a multi-tasking system that a user program will

go into an in�nite loop, so that control never returns to the OS and the whole

system stops. We have to make sure that the OS always remains in control by

some method. Here are two possibilities:

� The operating system fetches each instruction from the user program and

executes it personally, never giving it directly to the CPU. The OS software

switches between di�erent processes by fetching the instructions it decides

to execute. This is a kind of software emulation. This method works, but

it is extremely ine�cient because the OS and the user program are always

running together. The full speed of the CPU is not realized. This method

is often used to make simulators and debuggers.
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� A more common method is to switch o� the OS while the user program

is executing and switch o� the user process while the OS is executing.

The switching is achieved by hardware rather than software, as follows.

When handing control to a user program, the OS uses a hardware timer to

ensure that control will return after a certain time. The OS loads a �xed

time interval into the timer's control registers and gives control to the user

process. The timer then counts down to zero and when it reaches zero it

generates a non-maskable interrupt, whereupon control returns to the OS.

3.2 Memory map

We can represent a multi-tasking system schematically as in �gure 3.1. Clearly

the memory map of a computer does not look like this �gure. It looks like the

�gures in the previous chapter, so the OS has to simulate this behaviour using

software. The point of this diagram is only that it shows the elements required

by each process executing on the system.

Kernel

Input/output Screen memory

Virtual I/O Virtual I/O Virtual I/O

Program #1 Program #2 Program #3

Stack Stack Stack

Figure 3.1: Schematic diagram of a multitasking system.

Each program must have a memory area to work in and a stack to keep track

of subroutine calls and local variables.
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Each program must have its own input/output sources. These cannot be

the actual resources of the system: instead, each program has a virtual I/O

stream. The operating system arranges things so that the virtual I/O looks, to

the user program, as though it is just normal I/O. In reality, the OS controls all

the I/O itself and arranges the sharing of resources transparently. The virtual

output stream for a program might be a window on the real screen, for instance.

The virtual printer is really a print-queue. The keyboard is only `connected' to

one task at a time, but the OS can share this too. For example, in a window

environment, this happens when a user clicks in a particular window.

3.3 Kernel and shells - layers of software

So far we have talked about the OS almost as though it were a living thing. In

a multitasking, multi-user OS like UNIX this is not a bad approximation to the

truth! In what follows we make use of UNIX terminology and all of the examples

we shall cover later will refer to versions of the UNIX operating system.

The part of the OS which handles all of the details of sharing and device

handling is called the kernel or core. The kernel is not something which can be

used directly, although its services can be accessed through system calls. What is

needed is a user interface or command line interface (CLI) which allows users to

log onto the machine and manipulate �les, compile programs and execute them

using simple commands. Since this is a layer of software which wraps the kernel

in more acceptable clothes, it is called a shell around the kernel.

It is only by making layers of software, in a hierachy that very complex pro-

grams can be written and maintained. The idea of layers and hierarchies returns

again and again.

3.4 Services: daemons

The UNIX kernel is a very large program, but it does not perform all of the

services required in an OS. To keep the size of the kernel to a minimum, it

only deals with the sharing of resources. Other jobs for operating system (which

we can call services) are implemented by writing program which run along side

user's programs. Indeed, they are just `user programs' { the only di�erence is

that are owned by the system. These programs are called daemons. Here are

some example from UNIX.

� mountd: Deals with requests for `mounting' this machine's disks on other

machines - i.e. requests to access the disk on this machine from another
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machine on the network.

� rlogind: Handles requests to login from remote terminals.

� keyserv: A server which stores public and private keys. Part of a network

security system.

� syslogd: Records information about important events in a log �le.

� named: Converts machine names into their network addresses and vice

versa.

3.5 Multiprocessors { parallelism

The idea of constructing computers with more than one CPU has become more

popular recently. On a system with several CPUs it is not just a virtual fact that

several tasks can be performed simultaneously { it is a reality. This introduces

a number of complications in OS design. For example { how can we stop two

independent processors from altering some memory location which they both

share simultaneously (so that neither of them can detect the collision)? This is a

problem in process synchronization. The solution to this problem is much simpler

in a single CPU system since no two things ever happen truly simultaneously.

We shall consider this in more detail in later chapters. For now it is useful

to keep in mind that multiprocessors are an important element of modern OS

design.

Exercises

1. Write a program to manage an array of many stacks.

2. Describe the di�erence between the kernel and daemons in UNIX. What is

the point of making this distinction?

3. What is two-mode operation?

4. What is the di�erence between an emulator or simulator and true multi-

tasking?

5. To prepare to for the project suggestion in the next chapter, write a program

which reads �ctitious commands in from a �le. The commands should be

of the form:
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operator operand

load 12

add 23

store 1334

jsr 5678

wait 1

fork 0

etc. Read in the commands and print out a log of what the commands are,

in the form "Executing (operator) on (operand)". You should be able to

recognize the commands `wait' and `fork' specially, but the other commands

may be anything you like. The aim is to simulate the type of commands a

real program has to execute.
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Chapter 4

Processes and Thread

4.1 Key concepts

Multitasking and multi-user systems need to distinguish between the di�erent

programs being executed by the system. This is accomplished with the concept

of a process.

4.1.1 Naming conventions

Before talking about process management we shall introduce some of the names

which are in common use. Not all operating systems or books agree on the

de�nitions of these names. In this chapter we shall take a liberal attitude { after

all, it is the ideas rather than the names which count. Try to remember the

di�erent terms { they will be used repeatedly.

� Process: This is a general term for a program which is being executed.

All work done by the CPU contributes to the execution of processes. Each

process has a descriptive information structure associated with it (normally

held by the kernel) called a process control block which keeps track of how

far the execution has progressed and what resources the process holds.

� Task: On some systems processes are called tasks.

� Job: Some systems distinguish between batch execution and interactive

execution. Batch (or queued) processes are often called jobs. They are

like production line processes which start, do something and quit, without

stopping to ask for input from a user. They are non-interactive processes.

� Thread: (sometimes called a lightweight process) is di�erent from process

or task in that a thread is not enough to get a whole program executed. A
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thread is a kind of stripped down process { it is just one `active hand' in a

program { something which the CPU is doing on behalf of a program, but

not enough to be called a complete process. Threads remember what they

have done separately, but they share the information about what resources

a program is using, and what state the program is in. A thread is only a

CPU assignment. Several threads can contribute to a single task. When

this happens, the information about one process or task is used by many

threads. Each task must have at least one thread in order to do any work.

� CPU burst: A period of uninterrupted CPU activity.

� I/O burst: A period of uninterrupted input/output activity.

4.1.2 Scheduling

On most multitasking systems, only one process can truly be active at a time {

the system must therefore share its time between the execution of many processes.

This sharing is called scheduling. (Scheduling $ time management.)

Di�erent methods of scheduling are appropriate for di�erent kinds of execu-

tion. A queue is one form of scheduling in which each program waits its turn and

is executed serially. This is not very useful for handling multitasking, but it is

necessary for scheduling devices which cannot be shared by nature. An example

of the latter is the printer. Each print job has to be completed before the next

one can begin, otherwise all the print jobs would be mixed up and interleaved

resulting in nonsense.

We shall make a broad distinction between two types of scheduling:

� Queueing. This is appropriate for serial or batch jobs like print spooling

and requests from a server. There are two main ways of giving priority

to the jobs in a queue. One is a �rst-come �rst-served (FCFS) basis, also

referred to as �rst-in �rst-out (FIFO); the other is to process the shortest

job �rst (SJF).

� Round-robin. This is the time-sharing approach in which several tasks

can coexist. The scheduler gives a short time-slice to each job, before

moving on to the next job, polling each task round and round. This way,

all the tasks advance, little by little, on a controlled basis.

These two categories are also referred to as non-preemptive and preemptive re-

spectively, but there is a grey area.
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� Strictly non-preemptive Each program continues executing until it has

�nished, or until it must wait for an event (e.g. I/O or another task). This

is like Windows 95 and MacIntosh system 7.

� Strictly preemptive The system decides how time is to be shared between

the tasks, and interrupts each process after its time-slice whether it likes it

or not. It then executes another program for a �xed time and stops, then

the next...etc.

� Politely-preemptive?? The system decides how time is to be shared,

but it will not interrupt a program if it is in a critical section. Certain

sections of a program may be so important that they must be allowed to

execute from start to �nish without being interrupted. This is like UNIX

and Windows NT.

To choose an algorithm for scheduling tasks we have to understand what it is

we are trying to achieve. i.e. What are the criterea for scheduling?

� We want to maximize the e�ciency of the machine. i.e. we would like all the

resources of the machine to be doing useful work all of the time { i.e. not be

idling during one process, when another process could be using them. The

key to organizing the resources is to get the CPU time-sharing right, since

this is the central `organ' in any computer, through which almost everything

must happen. But this cannot be achieved without also thinking about

how the I/O devices must be shared, since the I/O devices communicate

by interrupting the CPU from what it is doing. (Most workstations spend

most of their time idling. There are enormous amounts of untapped CPU

power going to waste all over the world each day.)

� We would like as many jobs to get �nished as quickly as possible.

� Interactive users get irritated if the performance of the machine seems slow.

We would like the machine to appear fast for interactive users { or have a

fast response time.

Some of these criterea cannot be met simultaneously and we must make com-

promises. In particular, what is good for batch jobs is often not good for inter-

active processes and vice-versa, as we remark under Run levels { priority below.
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LOW

System processes

Interactive user processes

Batch scheduling

Mostly sleeping processes

Figure 4.1: Multi-level scheduling.

4.1.3 Scheduling hierarchy

Complex scheduling algorithms distinguish between short-term and long-term

scheduling. This helps to deal with tasks which fall into two kinds: those which

are active continuously and must therefore be serviced regularly, and those which

sleep for long periods.

For example, in UNIX the long term scheduler moves processes which have

been sleeping for more than a certain time out of memory and onto disk, to make

space for those which are active. Sleeping jobs are moved back into memory only

when they wake up (for whatever reason). This is called swapping.

The most complex systems have several levels of scheduling and exercise dif-

ferent scheduling polices for processes with di�erent priorities. Jobs can even

move from level to level if the circumstances change.

4.1.4 Runs levels - priority

Rather than giving all programs equal shares of CPU time, most systems have

priorities. Processes with higher priorities are either serviced more often than

processes with lower priorities, or they get longer time-slices of the CPU.
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Priorities are not normally �xed but vary according to the performance of the

system and the amount of CPU time a process has already used up in the recent

past. For example, processes which have used a lot of CPU time in the recent

past often have their priority reduced. This tends to favour iterative processes

which wait often for I/O and makes the response time of the system seem faster

for interactive users.

In addition, processes may be reduced in priority if their total accumulated

CPU usage becomes very large. (This occurs, for example in UNIX). The wisdom

of this approach is arguable, since programs which take a long time to complete

tend to be penalized. Indeed, they take must longer to complete because their

priority is reduced. If the priority continued to be lowered, long jobs would never

get �nished. This is called process starvation and must be avoided.

Scheduling algorithms have to work without knowing how long processes will

take. Often the best judge of how demanding a program will be is the user who

started the program. UNIX allows users to reduce the priority of a program

themselves using the nice command. `Nice' users are supposed to sacri�ce their

own self-interest for the good of others. Only the system manager can increase

the priority of a process.

Another possibility which is often not considered, is that of increasing the

priority of resource-gobbling programs in order to get them out of the way as fast

as possible. This is very di�cult for an algorithm to judge, so it must be done

manually by the system administrator.

4.1.5 Context switching

Switching from one running process to another running process incurs a cost to

the system. The values of all the registers must be saved in the present state,

the status of all open �les must be recorded and the present position in the

program must be recorded. Then the contents of the MMU must be stored for

the process (see next chapter). Then all those things must be read in for the next

process, so that the state of the system is exactly as it was when the scheduler

last interrupted the process. This is called a context switch. Context switching

is a system overhead. It costs real time and CPU cycles, so we don't want to

context switch too often, or a lot of time will be wasted.

The state of each process is saved to a data structure in the kernel called a

process control block (PCB). Here is an example PCB from Mach OS:

typedef struct machpcb

{

char mpcb_frame[REGOFF];
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struct regs mpcb_regs; /* user's saved registers */

struct rwindow mpcb_wbuf[MAXWIN]; /* user window save buffer */

char *mpcb_spbuf[MAXWIN]; /* sp's for each wbuf */

int mpcb_wbcnt; /* number of saved windows in pcb_wbuf */

struct v9_fpu *mpcb_fpu; /* fpu state */

struct fq mpcb_fpu_q[MAXFPQ]; /* fpu exception queue */

int mpcb_flags; /* various state flags */

int mpcb_wocnt; /* window overflow count */

int mpcb_wucnt; /* window underflow count */

kthread_t *mpcb_thread; /* associated thread */

}

machpcb_t;

Below is a kernel process structure for a UNIX system.

struct proc

{

struct proc *p_link; /* linked list of running processes */

struct proc *p_rlink;

struct proc *p_nxt; /* linked list of allocated proc slots */

struct proc **p_prev; /* also zombies, and free procs */

struct as *p_as; /* address space description */

struct seguser *p_segu; /* "u" segment */

caddr_t p_stack; /* kernel stack top for this process */

struct user *p_uarea; /* u area for this process */

char p_usrpri; /* user-priority based on p_cpu and p_nice */

char p_pri; /* priority, negative is high */

char p_cpu; /* (decayed) cpu usage solely for scheduling */

char p_stat;

char p_time; /* seconds resident (for scheduling) */

char p_nice; /* nice for cpu usage */

char p_slptime; /* seconds since last block (sleep) */

char p_cursig;

int p_sig; /* signals pending to this process */

int p_sigmask; /* current signal mask */

int p_sigignore; /* signals being ignored */

int p_sigcatch; /* signals being caught by user */

int p_flag;

uid_t p_uid; /* user id, used to direct tty signals */

uid_t p_suid; /* saved (effective) user id from exec */

gid_t p_sgid; /* saved (effective) group id from exec */

short p_pgrp; /* name of process group leader */

short p_pid; /* unique process id */

short p_ppid; /* process id of parent */

u_short p_xstat; /* Exit status for wait */

short p_cpticks; /* ticks of cpu time, used for p_pctcpu */

struct ucred *p_cred; /* Process credentials */

struct rusage *p_ru; /* mbuf holding exit information */

int p_tsize; /* size of text (clicks) */

int p_dsize; /* size of data space (clicks) */

int p_ssize; /* copy of stack size (clicks) */

int p_rssize; /* current resident set size in clicks */

int p_maxrss; /* copy of u.u_limit[MAXRSS] */

int p_swrss; /* resident set size before last swap */

caddr_t p_wchan; /* event process is awaiting */

long p_pctcpu; /* (decayed) %cpu for this process */

struct proc *p_pptr; /* pointer to process structure of parent */

struct proc *p_cptr; /* pointer to youngest living child */

struct proc *p_osptr; /* pointer to older sibling processes */

struct proc *p_ysptr; /* pointer to younger siblings */

struct proc *p_tptr; /* pointer to process structure of tracer */

struct itimerval p_realtimer;

struct sess *p_sessp; /* pointer to session info */

struct proc *p_pglnk; /* list of pgrps in same hash bucket */

short p_idhash; /* hashed based on p_pid for kill+exit+... */
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short p_swlocks; /* number of swap vnode locks held */

struct aiodone *p_aio_forw; /* (front)list of completed asynch IO's */

struct aiodone *p_aio_back; /* (rear)list of completed asynch IO's */

int p_aio_count; /* number of pending asynch IO's */

int p_threadcnt; /* ref count of number of threads using proc */

int p_cpuid; /* processor this process is running on */

int p_pam; /* processor affinity mask */

};

UNIX also uses a `user' structure to keep auxiliary information which is only

needed when jobs are not `swapped out' (see next chapter).

4.1.6 Interprocess communication

One of the bene�ts of multitasking is that several processes can be made to

cooperate in order to achieve their ends. To do this, they must do one of the

following.

� Communicate. Interprocess communication (IPC) involves sending infor-

mation from one process to another. This can be achieved using a `mailbox'

system, a socket (Berkeley) which behaves like a virtual communications

network (loopback), or through the use of `pipes'. Pipes are a system con-

struction which enables one process to open another process as if it were a

�le for writing or reading.

� Share data. A segment of memory must be available to both processes.

(Most memory is locked to a single process).

� Waiting. Some processes wait for other processes to give a signal before

continuing. This is an issue of synchronization.

As soon as we open the door to co-operation there is a problem of how to

synchronize cooperating processes. For example, suppose two processes modify

the same �le. If both processes tried to write simultaneously the result would be

a nonsensical mixture. We must have a way of synchronizing processes, so that

even concurrent processes must stand in line to access shared data serially.

Synchronization is a tricky problem in multiprocessor systems, but it can be

achieved with the help of critical sections and semaphores/ locks. We shall return

to these below.
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4.2 Creation and scheduling

4.2.1 Creating processes

The creation of a process requires the following steps. The order in which they

are carried out is not necessarily the same in all cases.

1. Name. The name of the program which is to run as the new process must

be known.

2. Process ID and Process Control Block. The system creates a new

process control block, or locates an unused block in an array. This block

is used to follow the execution of the program through its course, keeping

track of its resources and priority. Each process control block is labelled by

its PID or process identi�er.

3. Locate the program to be executed on disk and allocate memory for the

code segment in RAM.

4. Load the program into the code segment and initialize the registers of

the PCB with the start address of the program and appropriate starting

values for resources.

5. Priority. A priority must be computed for the process, using a default for

the type of process and any value which the user speci�ed as a `nice' value

(see Run levels { priorities above).

6. Schedule the process for execution.

4.2.2 Process hierarchy: children and parent processes

In a democratic system anyone can choose to start a new process, but it is never

users which create processes but other processes! That is because anyone using

the system must already be running a shell or command interpreter in order to

be able to talk to the system, and the command interpreter is itself a process.

When a user creates a process using the command interpreter, the new process

become a child of the command interpreter. Similarly the command interpreter

process becomes the parent for the child. Processes therefore form a hierarchy.
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Level 2

Figure 4.2: Process hierachies

The processes are linked by a tree structure. If a parent is signalled or killed,

usually all its children receive the same signal or are destroyed with the parent.

This doesn't have to be the case|it is possible to detach children from their

parents|but in many cases it is useful for processes to be linked in this way.

When a child is created it may do one of two things.

� Duplicate the parent process.

� Load a completely new program.

Similarly the parent may do one of two things.

� Continue executing along side its children.

� Wait for some or all of its children to �nish before proceeding.

4.2.3 Unix: fork() and wait()

As an example of process creation, we shall consider UNIX. The following exam-

ple program is written in C++ and makes use of the standard library function

fork(). The syntax of fork is

returncode = fork();

When this instruction is executed, the process concerned splits into two and

both continue to execute independently from after the fork intruction. If fork is

successful, it returns 0 to the child process and the process identi�er or pid of the

child process to the parent. It, for some reason, a new process cannot be created

it returns a value of �1 to the parent.

The following example does not check for errors if fork fails.

//**************************************************************

//*

//* A brief demo of the UNIX process duplicator fork().

//*

//* g++ unix.C to compile this.

//*

//**************************************************************

#include <iostream.h>

extern "C" void sleep();

extern "C" int fork();

extern "C" int getpid();

extern "C" void wait();

extern "C" void exit();

void ChildProcess();

//***************************************************************
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main ()

{ int pid, cid;

pid = getpid();

cout << "Fork demo! I am the parent (pid = " << pid << ")\n";

if (! fork())

{

cid = getpid();

cout << "I am the child (cid=" << cid << ") of (pid = " << pid << ")\n";

ChildProcess();

exit(0);

}

cout << "Parent waiting here for the child...\n";

wait(NULL);

cout << "Child finished, parent quitting too!\n";

}

//**************************************************************

void ChildProcess()

{ int i;

for (i = 0; i < 10; i++)

{

cout << i << "..\n";

sleep(1);

}

}

Here is the output from the program in a test run. Note that the parent and

child processes share the same output stream, so we see how they are synchronised

from the order in which the output is mixed.

Fork demo! I am the parent (pid = 2196)

I am the child (cid=2197) of (pid = 2196)

0..

Parent waiting here for the child...

1..

2..

3..

4..

5..

6..

7..

8..

9..

Child finished, parent quitting too!

Note that the child has time to execute its �rst instruction before the parent

has time to call wait(), so the zero appears before the message from the parent.
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When the child goes to sleep for one second, the parent catches up.

4.2.4 Process states

In order to know when to execute a program and when not to execute a program,

it is convenient for the scheduler to label programs with a `state' variable. This is

just an integer value which saves the scheduler time in deciding what to do with

a process. Broadly speaking the state of a process may be one of the following.

1. New.

2. Ready (in line to be executed).

3. Running (active).

4. Waiting (sleeping, suspended)

5. Terminated (defunct)

When time-sharing, the scheduler only needs to consider the processes which are

in the `ready' state. Changes of state are made by the system and follow the

pattern in the diagram below. The transitions between di�erent states normally

happen on interrupts.

From state Event To state

New Accepted Ready

Ready Scheduled / Dispatch Running

Running Need I/O Waiting

Running Scheduler timeout Ready

Running Completion / Error / Killed Terminated

Waiting I/O completed or wakeup event Ready

4.2.5 Queue scheduling

The basis of all scheduling is the queue structure. A round-robin scheduler uses a

queue but moves cyclically through the queue at its own speed, instead of waiting

for each task in the queue to complete. Queue scheduling is primarily used for

serial execution.

There are two main types of queue.

46



CPU #1

CPU #2

CPU #3

Running

Waiting

Running

Waiting

Terminated

New

Figure 4.3: Process state diagram.

� First-come �rst-server (FCFS), also called �rst-in �rst-out (FIFO).

� Sorted queue, in which the elements are regularly ordered according to some

rule. The most prevalent example of this is the shortest job �rst (SJF) rule.

The FCFS queue is the simplest and incurs almost no system overhead. The SJF

scheme can cost quite a lot in system overhead, since each task in the queue must

be evaluated to determine which is shortest. The SJF strategy is often used for

print schedulers since it is quite inexpensive to determine the size of a �le to be

printed (the �le size is usually stored in the �le itself).

The e�ciency of the two schemes is subjective: long jobs have to wait longer

if short jobs are moved in front of them, but if the distribution of jobs is random

then we can show that the average waiting time of any one job is shorter in the

SJF scheme, because the greatest number of jobs will always be executed in the

shortest possible time.

Of course this argument is rather stupid, since it is only the system which

cares about the average waiting time per job, for its own prestige. Users who

print only long jobs do not share the same clinical viewpoint. Moreover, if only

short jobs arrive after one long job, it is possible that the long job will never
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get printed. This is an example of starvation. A fairer solution is required (see

exercises below).

Queue scheduling can be used for CPU scheduling, but it is quite ine�cient.

To understand why simple queue scheduling is not desirable we can begin by

looking at a diagram which shows how the CPU and the devices are being used

when a FCFS queue is used. We label each process by P1, P2... etc. A blank

space indicates that the CPU or I/O devices are in an idle state (waiting for a

customer).

Time !

CPU P1 - P1 - P2 -

devices - P1 - P1 - P2

This diagram shows that P1 starts out with a CPU burst. At some point it

needs input (say from a disk) and sends a request to the device. While the device

is busy servicing the request from P1, the CPU is idle, waiting for the result.

Similarly, when the result returns, the device waits idle while the next CPU burst

takes place. When P1 is �nished, P2 is started and goes through the same kind

of cycle.

There are many blank spaces in the diagram, where the devices and the CPU

are idle. Why, for example, couldn't the device be searching for the I/O for P2

while the CPU was busy with P1 and vice versa?

We can improve the picture by introducing a new rule: every time one process

needs to wait for a device, it gets put to the back of the queue. Now consider

the following diagram, in which we have three processes. They will always be

scheduled in order P1, P2, P3 until one or all of them is �nished.

Time !

CPU P1 P2 P3 P1 P2-�nishes P3 P1-�nishes P3 - P3

devices - P1 P2 P3 P1 - P3 - P3 -

P1 starts out as before with a CPU burst. But now when it occupies the

device, P2 takes over the CPU. Similarly when P2 has to wait for the device
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to complete its I/O, P3 gets executed, and when P3 has to wait, P1 takes over

again. Now suppose P2 �nishes: P3 takes over, since it is next in the queue, but

now the device is idle, because P2 did not need to use the device. Also, when

P1 �nishes, only P3 is left and the gaps of idle time get bigger.

In the beginning, this second scheme looked pretty good { both the CPU and

the devices were busy most of the time (few gaps in the diagram). As processes

�nished, the e�ciency got worse, but on a real system, someone will always be

starting new processes so this might not be a problem.

Let us ask { how can we improve this scheme? The resource utilization is not

too bad, but the problem is that it assumes that every program goes in a kind of

cycle

CPU  ! I=O:

If one program spoils this cycle by performing a lot of CPU intensive work,

or by waiting for dozens of I/O requests, then the whole scheme goes to pieces.

4.2.6 Round-robin scheduling

The use of the I/O - CPU burst cycle to requeue jobs improves the resource

utilization considerably, but it does not prevent certain jobs from hogging the

CPU. Indeed, if one process went into an in�nite loop, the whole system would

stop dead. Also, it does not provide any easy way of giving some processes

priority over others.

A better solution is to ration the CPU time, by introducing time-slices. This

means that

1. no process can hold onto the CPU forever,

2. processes which get requeued often (because they spend a lot of time waiting

for devices) come around faster, i.e. we don't have to wait for CPU intensive

processes, and

3. the length of the time-slices can be varied so as to give priority to particular

processes.

The time-sharing is implemented by a hardware timer. On each context

switch, the system loads the timer with the duration of its time-slice and hands

control over to the new process. When the timer times-out, it interrupts the CPU

which then steps in and switches to the next process.
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The basic queue is the FCFS/FIFO queue. New processes are added to the

end, as are processes which are waiting.

The success or failure of round-robin (RR) scheduling depends on the length

of the time-slice or time-quantum. If the slices are too short, the cost of context

switching becomes high in comparision to the time spent doing useful work. If

they become too long, processes which are waiting spend too much time doing

nothing { and in the worst case, everything reverts back to FCFS. A rule of

thumb is to make the time-slices large enough so that only, say, twenty percent

of all context switches are due to timeouts { the remainder occur freely because

of waiting for requested I/O.

4.2.7 CPU quotas and accounting

Many multiuser systems allow restrictions to be placed on user activity. For

example, it is possible to limit the CPU time used by any one job. If a job exceeds

the limit, it is terminated by the kernel. In order to make such a decision, the

kernel has to keep detailed information about the cumulative use of resources

for each process. This is called accounting and it can be a considerable system

overhead. Most system administrators would prefer not to use accounting {

though unfortunately many are driven to it by thoughtless or hostile users.

4.3 Threads

4.3.1 Heavy and lightweight processes

Threads, sometimes called lightweight processes (LWPs) are indepedendently sched-

uled parts of a single program. We say that a task is multithreaded if it is com-

posed of several independent subprocesses which do work on common data, and

if each of those pieces could (at least in principle) run in parallel.

If we write a program which uses threads { there is only one program, one

executable �le, one task in the normal sense. Threads simply enable us to split up

that program into logically separate pieces, and have the pieces run independently

of one another, until they need to communicate. In a sense, threads are a further

level of object orientation for multitasking systems. They allow certain functions

to be executed in parallel with others.
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Figure 4.4: System and user level threads: suppose we think of a household

kitchen as being a process, then each electrical appliance which contributes to

the work of the kitchen is like a thread. In order to work, a thread needs power.

The power sockets are like kernel threads or CPUs. A job like making a cake or

tidying up might involve several threads (powered machinery), which might run

in parallel or one after the other. Since there are more appliances than power

points, we have to schedule the time each appliance gets power so as to share

between all of them.

On a truly parallel computer (several CPUs) we might imagine parts of a

program (di�erent subroutines) running on quite di�erent processors, until they

need to communicate. When one part of the program needs to send data to the

other part, the two independent pieces must be synchronized, or be made to wait

for one another. But what is the point of this? We can always run independent

procedures in a program as separate programs, using the process mechanisms we

have already introduced. They could communicate using normal interprocesses

communication. Why introduce another new concept? Why do we need threads?

The point is that threads are cheaper than normal processes, and that they can

be scheduled for execution in a user-dependent way, with less overhead. Threads

are cheaper than a whole process because they do not have a full set of resources

each. Whereas the process control block for a heavyweight process is large and

costly to context switch, the PCBs for threads are much smaller, since each thread

has only a stack and some registers to manage. It has no open �le lists or resource

lists, no accounting structures to update. All of these resources are shared by all

threads within the process. Threads can be assigned priorities { a higher priority

thread will get put to the front of the queue.

In other words, threads are processes within processes!

Threads can only run inside a normal process.

Let's de�ne heavy and lightweight processes with the help of a table.

Object Resources

Thread (LWP) Stack + set of CPU registers + CPU time.

Task (HWP) 1 thread + process control block,

program code, memory segment etc.

Multithreaded task n-threads + process control block,

program code, memory segment etc.
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4.3.2 Why use threads?

From our discussion of scheduling, we can see that the sharing of resources could

have been made more e�ective if the scheduler had known exactly what each

program was going to do in advance. Of course, the scheduling algorithm can

never know this { but the programmer who wrote the program does know. Using

threads it is possible to organize the execution of a program in such a way that

something is always being done, when ever the scheduler gives the heavyweight

process CPU time.

� Threads allow a programmer to switch between lightweight processes when

it is best for the program. (The programmer has control.)

� A process which uses threads does not get more CPU time than an ordinary

process { but the CPU time it gets is used to do work on the threads. It is

possible to write a more e�cient program by making use of threads.

� Inside a heavyweight process, threads are scheduled on a FCFS basis, unless

the program decides to force certain threads to wait for other threads. If

there is only one CPU, then only one thread can be running at a time.

� Threads context switch without any need to involve the kernel { the switch-

ing is performed by a user level library, so time is saved because the kernel

doesn't need to know about the threads.

4.3.3 Levels of threads

In modern operating systems, there are two levels at which threads operate: sys-

tem or kernel threads and user level threads. If the kernel itself is multithreaded,

the scheduler assigns CPU time on a thread basis rather than on a process basis.

A kernel level thread behaves like a virtual CPU, or a power-point to which user-

processes can connect in order to get computing power. The kernel has as many

system level threads as it has CPUs and each of these must be shared between

all of the user-threads on the system. In other words, the maximum number of

user level threads which can be active at any one time is equal to the number

of system level threads, which in turn is equal to the number of CPUs on the

system.

Since threads work \inside" a single task, the normal process scheduler cannot

normally tell which thread to run and which not to run { that is up to the

program. When the kernel schedules a process for execution, it must then �nd

out from that process which is the next thread it must execute. If the program
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is lucky enough to have more than one processor available, then several threads

can be scheduled at the same time.

Some important implementations of threads are

� The Mach System / OSF1 (user and system level)

� Solaris 1 (user level)

� Solaris 2 (user and system level)

� OS/2 (system level only)

� NT threads (user and system level)

� IRIX threads

� POSIX standardized user threads interface

4.3.4 Symmetric and asymmetric multiprocessing

Threads are of obvious importance in connection with parallel processing. There

are two approaches to scheduling on a multiprocessor machine:

� Asymmetric: one CPU does the work of the system, the other CPUs

service user requests.

� Symmetric: All processors can be used by the system and users alike. No

CPU is special.

The asymmetric variant is potentially more wasteful, since it is rare that the

system requires a whole CPU just to itself. This approach is more common on

very large machines with many processors, where the jobs the system has to do

is quite di�cult and warrants a CPU to itself.

4.3.5 Example: POSIX pthreads

The POSIX standardization organization has developed a standard set of function

calls for use of user-level threads. This library is called the pthread interface.

Let's look at an example program which counts the number of lines in a list

of �les. This program will serve as an example for the remainder of this chapter.

We shall �rst present the program without threads, and then rewrite it, starting a

new thread for each �le. The threaded version of the program has the possibility

of reading several of the �les in parallel and is in principle more e�cient, whereas

the non-threaded version must read the �les sequentially.

The non-threaded version of the program looks like this:
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//

// Count the number of lines in a number of files, non threaded

// version.

//

////////////////////////////////////////////////////////////////////////

#include <iostream.h>

#include <fstream.h>

const int bufsize = 100;

void ParseFile(char *);

int LINECOUNT = 0;

/**********************************************************************/

main ()

{

cout << "Single threaded parent...\n";

ParseFile("proc1");

ParseFile("proc2");

ParseFile("proc3");

ParseFile("proc4");

cout << "Number of lines = %d\n",LINECOUNT;

}

/**********************************************************************/

void ParseFile(char *filename)

{ fstream file;

char buffer[bufsize];

cout << "Trying to open " << filename << endl;

file.open(filename, ios::in);
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if (! file)

{

cerr << "Couldn't open file\n";

return;

}

while (!file.eof())

{

file.getline(buffer,bufsize);

cout << filename << ":" <<buffer << endl;

LINECOUNT++;

}

file.close();

}

This program calls the function ParseFile() several times to open and count

the number of lines in a series of �les. The number of lines is held in a global

variable called LINECOUNT. A global variable is, by de�nition, shared data. This

will cause a problem when we try to parallelize the program using threads. Here

is the threaded version:

//

// Count the number of lines in a number of files.

// Illustrates use of multithreading. Note: run this program

// several times to see how the threads get scheduled on the system.

// Scheduling will be different each time since the system has lots

// of threads running, which we do not see and these will affect the

// scheduling of our program.

//

// Note that, on a multiprocessor system, this program has a potential

// race condition to update the shared variable LINECOUNT, so we

// must use a mutex to make a short critical section whenever accessing

// this shared variable.

//

// This program uses POSIX threads (pthreads)

//

///////////////////////////////////////////////////////////////////////

#include <iostream.h>

#include <fstream.h>

#include <pthread.h>
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#include <sched.h>

const int bufsize = 100;

const int maxfiles = 4;

void *ParseFile(char *); // Must be void *, defined in pthread.h !

int LINECOUNT = 0;

/**********************************************************************/

main ()

{ pthread_t tid[maxfiles];;

int i,ret;

// Create a thread for each file

ret = pthread_create(&(tid[0]), NULL, ParseFile,"proc1");

ret = pthread_create(&(tid[1]), NULL, ParseFile,"proc2");

ret = pthread_create(&(tid[2]), NULL, ParseFile,"proc3");

ret = pthread_create(&(tid[3]), NULL, ParseFile,"proc4");

cout << "Parent thread waiting...\n";

// If we don't wait for the threads, they will be killed

// before they can start...

for (i = 0; i < maxfiles; i++)

{

ret = pthread_join(tid[i],(void **)NULL);

}

cout << "Parent thread continuing\n";

cout << "Number of lines = " << LINECOUNT << endl;

}

/**********************************************************************/

void *ParseFile(char *filename)
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{ fstream file;

char buffer[bufsize];

pthread_mutex_t mutex;

int ret;

cout << "Trying to open " << filename << endl;

file.open(filename, ios::in);

if (! file)

{

cerr << "Couldn't open file\n";

return NULL;

}

while (!file.eof())

{

file.getline(buffer,bufsize);

cout << filename << ":" <<buffer << endl;

// Critical section

ret = pthread_mutex_lock(&mutex);

LINECOUNT++;

ret = pthread_mutex_unlock(&mutex);

// Try uncommenting this ....

// Yield the process, to allow next thread to be run

// sched_yield();

}

file.close();

}

In this version of the program, a separate thread is spawned for each �le. First

we call the function pthread_create() for each �le we encounter. A new thread

is spawned with a pointer to the function the thread should execute (in this case

the same function for all threads), called ParseFile(), which reads lines from

the respective �les and increments the global variable LINECOUNT. Several things

are important here.
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The main program is itself a thread. It is essential that we tell the main

program to wait for the additional threads to join the main program before

exiting, otherwise the main program will exit and kill all of the child threads

immediately. Thread join-semantics are like wait-semantics for normal processes.

Each of the threads updates the same global variable. Suppose now that two

threads are running on di�erent CPUs. It is possible that both threads would try

to alter the value of the variable LINECOUNT simultaneously. This is called a race

condition and can lead to unpredictable results. For this reason we use a mutex

to lock the variable while it is being updated. We shall discuss this more in the

next section.

A �nal point to note is the commented out lines in the ParseFile() function.

The call sched_yield() tells a running thread to give itself up to the scheduler,

so that the next thread to be scheduled can run instead. This function can

be used to switch between several threads. By calling this function after each

line is read from the �les, we can spread the the CPU time evenly between

each thread. Actually, it is di�cult to predict precisely which threads will be

scheduled and when, because the threads in our program here are only a small

number, compared to the total number of threads waiting to be scheduled by

the system. The interaction with disk I/O can also have a complicated e�ect on

the scheduling. On a single CPU system, threads are usually scheduled FCFS

in a queue. If we yield after every instruction, it has the e�ect of simulating

round-robin scheduling.

4.3.6 Example: LWPs in Solaris 1

Early solaris systems had user-level threads only, which were called light weight

processes. Since the kernel was single threaded, only one user-level thread could

run at any given time.

To create a threaded process in solaris 1, one simply has to execute a LWP

system call. The `lightweight processes library' then converts the normal process

into a process descriptor plus a thread. Here is the simplest example

/********************************************************************/

/* */

/* Creating a light weight process in SunOS 4.1.3 */

/* */

/********************************************************************/

#include <lwp/lwp.h>

#include <lwp/stackdep.h>

#define MINSTACKSZ 1024

#define STACKSIZE 1000 + MINSTACKSZ

#define MAXPRIORITY 10

/*********************************************************************/

stkalign_t stack[STACKSIZE];
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/*********************************************************************/

/* Zone 0 */

/*********************************************************************/

main ()

{ thread_t tid;

int task();

pod_setmaxpri(MAXPRIORITY); /* This becomes a lwp here */

lwp_create(&tid,task,MAXPRIORITY,0,STKTOP(stack),0);

printf("Done! - Now other threads can run...\n");

}

/*********************************************************************/

/* Zone 1 */

/*********************************************************************/

task ()

{

printf("Task: next thread after main()!\n");

}

Here is an example program containing several threads which wait for each other.

/********************************************************************/

/* */

/* Creating a light weight process in sunos 4.1.3 (Solaris 1) */

/* */

/* Yielding to other processes */

/* */

/********************************************************************/

#include <lwp/lwp.h>

#include <lwp/stackdep.h>

#define MINSTACKSZ 1024

#define STACKCACHE 1000

#define STACKSIZE STACKCACHE + MINSTACKSZ

#define MAXPRIORITY 10

#define MINPRIORITY 1

/*********************************************************************/

stkalign_t stack[STACKSIZE];

/*********************************************************************/

/* Zone 0 */

/*********************************************************************/

main ()

{ thread_t tid_main;

thread_t tid_prog1;

thread_t tid_prog2;

int prog1(), prog2();

lwp_self(&tid_main); /* Get main's tid */

lwp_setstkcache(STACKCACHE,3); /* Make a cache for each prog */

lwp_create(&tid_prog1,prog1,MINPRIORITY,0,lwp_newstk(),0);

lwp_create(&tid_prog2,prog2,MINPRIORITY,0,lwp_newstk(),0);

printf("One ");

lwp_yield(THREADNULL);

printf("Four ");

lwp_yield(tid_prog2);

printf("Six ");
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exit(0);

}

/*********************************************************************/

/* Zone 1,2.. */

/*********************************************************************/

prog1 ()

{

printf("Two ");

if (lwp_yield(THREADNULL) < 0)

{

lwp_perror("Bad yield");

return;

}

printf("Seven \n");

}

/*********************************************************************/

prog2 ()

{

printf("Three ");

lwp_yield(THREADNULL);

printf("Five ");

}

4.4 Synchronization of processes and threads

When two or more processes work on the same data simultaneously strange things

can happen. We have already seen one example in the threaded �le reader in

previous section: when two parallel threads attempt to update the same variable

simultaneously, the result is unpredictable. The value of the variable afterwards

depends on which of the two threads was the last one to change the value. This

is called a race condition. The value depends on which of the threads wins the

race to update the variable.

What we need in a multitasking system is a way of making such situations

predictable. This is called serialization.

4.4.1 Problems with sharing for processes

It is not only threads which need to be synchronized. Suppose one user is running

a script program and editing the program simultaneously. The script is read in

line by line. During the execution of the script, the user adds four lines to

the beginning of the �le and saves the �le. Suddenly, when the next line of

the executing script gets read, the pointer to the next line points to the wrong

location and it reads in the same line it already read in four lines ago! Everything
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in the program is suddenly shifted by four lines, without the process execting the

script knowing about it.

This example (which can actually happen in the UNIX shell) may or may not

turn out to be serious { clearly, in general, it can be quite catastrophic. It is a

problem of synchronization on the part of the user and the �lesystem1.

We must consider programs which share data.

1. When do we need to prevent programs from accessing data simultaneously?

If there are 100 processes which want to read from a �le, this will cause no

problems because the data themselves are not changed by a read operation.

A problem only arises if more than one of the parties wants to modify the

data.

2. Is it even sensible for two programs to want to modify data simultaneously?

Or is it simply a stupid thing to do? We must be clear about whether

such collisions can be avoided, or whether they are a necessary part of a

program. For instance, if two independent processes want to add entries

to a database, this is a reasonable thing to do. If two unrelated processes

want to write a log of their activities to the same �le, it is probably not

sensible: a better solution would be to use two separate �les.

3. How should we handle a collision between processes? Should we signal an

error, or try to make the processes wait in turn? There is no universal

answer to this question { in some cases it might be logically incorrect for

two processes to change data at the same time: if two processes try to

change one numerical value then one of them has to win { which one? On

the other hand, if two processes try to add something to a list, that makes

sense, but we have to be sure that they do not write their data on top of

each other. The writing must happen serially, not in parallel.

4.4.2 Serialization

The key idea in process synchronization is serialization. This means that we

have to go to some pains to undo the work we have put into making an operating

system perform several tasks in parallel. As we mentioned, in the case of print

queues, parallelism is not always appropriate.

Synchronization is a large and di�cult topic, so we shall only undertake to

describe the problem and some of the principles involved here.

1Experts might say that this has purely to do with �lesystem semantics (see chapter 5) but

given the �lesystem, this becomes a synchronization problem.
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There are essentially two strategies to serializing processes in a multitasking

environment.

� The scheduler can be disabled for a short period of time, to prevent control

being given to another process during a critical action like modifying shared

data. This method is very ine�cient on multiprocessor machines, since all

other processors have to be halted every time one wishes to execute a critical

section.

� A protocol can be introduced which all programs sharing data must obey.

The protocol ensures that processes have to queue up to gain access to

shared data. Processes which ignore the protocol ignore it at their own

peril (and the peril of the remainder of the system!). This method works

on multiprocessor machines also, though it is more di�cult to visualize.

The responsibility of serializing important operations falls on programmers.

The OS cannot impose any restrictions on silly behaviour { it can only provide

tools and mechanisms to assist the solution of the problem.

4.4.3 Mutexes: mutual exclusion

Another way of talking about serialization is to use the concept of mutual exclu-

sion. We are interested in allowing only one process or thread access to shared

data at any given time. To serialize access to these shared data, we have to

exclude all processes except for one. Suppose two processes A and B are trying

to access shared data, then: if A is modifying the data, B must be excluded from

doing so; if B is modifying the data, A must be excluded from doing so. This is

called mutual exclusion.

Mutual exclusion can be achieved by a system of locks. A mutual exclusion

lock is colloquially called a mutex. You can see an example of mutex locking in

the multithreaded �le reader in the previous section. The idea is for each thread

or process to try to obtain locked-access to shared data:

Get_Mutex(m);

// Update shared data

Release_Mutex(m);

This protocol is meant to ensure that only one process at a time can get past

the function Get_Mutex. All other processes or threads are made to wait at the
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function Get_Mutex until that one process calls Release_Mutex to release the

lock. A method for implementing this is discussed below. Mutexes are a central

part of multithreaded programming.

4.4.4 User synchronization: �le locks

A simple example of a protocol solution, to the locking problem at the user level,

is the so-called �le-lock in UNIX. When write-access is required to a �le, we try

to obtain a lock by creating a lock-�le with a special name. If another user or

process has already obtained a lock, then the �le is already in use, and we are

denied permission to edit the �le. If the �le is free, a `lock' is placed on the �le

by creating the �le lock. This indicates that the �le now belongs to the new user.

When the user has �nished, the �le lock is deleted, allowing others to use the �le.

In most cases a lock is simply a text �le. If we wanted to edit a �le blurb,

the lock might be called blurb.lock and contain the user identi�er of the user

currently editing the �le. If other users then try to access the �le, they �nd that

the lock �le exists and are denied access. When the user is �nished with the �le,

the lock is removed.

The same method of locks can also be used to prevent two instances of a

program from starting up simultaneously. This is often used in mail programs

such as the ELM mailer in UNIX, since it would be unwise to try to read and

delete incoming mail with two instances of the mail program at the same time.

We can implement a lock very easily. Here is an example from UNIX in which

the lock �le contains the process identi�er. This is useful because if something

goes wrong and the editor crashes, the lock will not be removed. It is then

possible to see that the process the lock referred to no longer exists and the lock

can be safely removed.

//*********************************************************************

//

// Example of a program which uses a file lock to ensure

// that no one starts more than one copy of it.

//

//*********************************************************************

#include <iostream.h>

#include <fstream.h>

//**********************************************************************

// Include file

//**********************************************************************

extern "C" int getpid();

extern "C" void unlink(char *);

int Locked();

void RemoveLock();

const int true = 1;

const int false = 0;

const int exitstatus=1;
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//**********************************************************************

// Main program

//**********************************************************************

main ()

{

if (Locked())

{

cout << "This program is already running!\n";

return exitstatus;

}

// Program here

RemoveLock();

}

//**********************************************************************

// Toolkit: locks

//**********************************************************************

Locked ()

{ ifstream lockfile;

int pid;

lockfile.open("/tmp/lockfile",ios::in);

if (lockfile)

{

return true;

}

lockfile.open("/tmp/lockfile",ios::out);

if (! lockfile)

{

cerr << "Cannot secure a lock!\n";

return true;

}

pid = getpid();

lockfile.out << pid;

lockfile.close();

return false;

}

//************************************************************************

void RemoveLock()

{

unlink("/tmp/lockfile");

}

4.4.5 Exclusive and non-exclusive locks

To control both read and write access to �les, we can use a system of exclusive

and non-exclusive locks.

If a user wishes to read a �le, a non-exclusive lock is used. Other users can also

get non-exclusive locks to read the �le simultaneously, but when a non-exclusive

lock is placed on a �le, no user may write to it.

To write to a �le, we must get an exclusive lock. When an exclusive lock is

obtained, no other users can read or write to the �le.
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4.4.6 Critical sections: the mutex solution

A critical section is a part of a program in which is it necessary to have exclusive

access to shared data. Only one process or thread may be in a critical section at

any one time.

In the past it was possible to implement this is by generalizing the idea of

interrupt masks, as mentioned in chapter 2. By switching o� interrupts (or more

appropriately, by switching o� the scheduler) a process can guarantee itself unin-

terrupted access to shared data. This method has drawbacks: i) masking inter-

rupts can be dangerous { there is always the possibility that important interrupts

will be missed, ii) it is not general enough in a multiprocessor environment, since

interrupts will continue to be serviced by other processors { so all processors

would have to be switched o�; iii) it is too harsh. We only need to prevent two

programs from being in their critical sections simultaneously if they share the

same data. Programs A and B might share di�erent data to programs C and D,

so why should they wait for C and D?

The modern way of implementing a critical section is to use mutexes as we

have described above. In 1981 G.L. Peterson discovered a simple algorithm for

achieving mutual exclusion between two processes with PID equal to 0 or 1. The

code goes like this:

int turn;

int interested[2];

void Get_Mutex (int pid)

{ int other;

other = 1 - pid;

interested[pid] = true;

turn = pid;

while (turn == pid && interested[other]) // Loop until no one

{ // else is interested

}

}

void Release_Mutex (int pid)

{

interested[pid] = false;
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}

Where more processes are involved, some modi�cations are necessary to this

algorithm. The key to serialization here is that, if a second process tries to

obtain the mutex, when another already has it, it will get caught in a loop, which

does not terminate until the other process has released the mutex. This solution

is said to involve busy waiting|i.e. the program actively executes an empty loop,

wasting CPU cycles, rather than moving the process out of the scheduling queue.

This is also called a spin lock, since the system `spins' on the loop while waiting.

4.4.7 Flags and semaphores

Flags are similar in concept to locks. The idea is that two cooperating processes

can synchronize their execution by sending very simple messages to each other.

A typical behaviour is that one process decides to stop and wait until another

process signals that it has arrived at a certain place.

For example, suppose we want to ensure that procedure1() in process 1 gets

executed before procedure2() in process 2.

// Process 1 // Process 2

procedure1(); wait(mysignal);

signal(mysignal); procedure2();

... ...

These operations are a special case of interprocess communication. A semaphore

is a 
ag which can have a more general value than just true or false. A semaphore

is an integer counting variable and is used to solve problems where there is com-

petition between processes. The idea is that one part of a program tends to

increment the semaphore while another part tends to decrement the semaphore.

The value of the 
ag variable dictates whether a program will wait or continue,

or whether something special will occur. There are many uses for semaphores

and we shall not go into them here. A simple example is reading and writing

via bu�ers, where we count how many items are in the bu�er. When the bu�er

becomes full, the process which is �lling it must be made to wait until space in

the bu�er is made available.
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4.4.8 Monitors

Some languages (like Modula) have special language class-environments for deal-

ing with mutual exclusion. Such an environment is called a monitor.

� A monitor is a language-device which removes some of the pain from syn-

chronization. Only one process can be `inside' a monitor at a time { users

don't need to code this themselves, they only have to create a monitor.

� A procedure or function de�ned under the umbrella of a monitor can only

access those shared memory locations declared within that monitor and

vice-versa.

� Wait and signal operations can be de�ned to wait for speci�c condition

variables. A process can thus wait until another process sends a signal or

semaphore which changes the condition variable.
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4.5 Deadlock

Waiting and synchronization is not all sweetness and roses. Consider the Eu-

ropean road rule which says: on minor roads one should always wait for tra�c

coming from the right. If four cars arrive simultaneously at a crossroads (see

�gure) then, according to the rule all of them must wait for each other and none

of them can ever move. This situation is called deadlock. It is the stale-mate of

the operating system world.

Figure 4.5: Deadlock in the European suburbs.

4.5.1 Cause

Deadlock occurs when a number of processes are waiting for an event which can

only be caused by another of the waiting processes.

These are the essential requirements for a deadlock:

1. Circular waiting. There must be a set of processes P1::Pn where P1 is

waiting for a resource or signal from P2, P2 is waiting for P3 ... and Pn is

waiting for P1.

2. Non-sharable resources. It is not possible to share the resources or signals
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which are being waited for. If the resource can be shared, there is no reason

to wait.

3. No preemption. The processes can not be forced to give up the resources

they are holding.

There are likewise three methods for handling deadlock situations:

1. Prevention. We can try to design a protocol which ensures that deadlock

never occurs.

2. Recovery. We can allow the system to enter a deadlock state and then

recover.

3. Ostrich method. We can pretend that deadlocks will never occur and live

happily in our ignorance. This is the method used by most operating sys-

tems. User programs are expected to behave properly. The system does

not interfere. This is understandable: it is very hard to make general rules

for every situation which might arise.

4.5.2 Prevention

Deadlock prevention requires a system overhead.

The simplest possibility for avoidance of deadlock is to introduce an extra layer

of software for requesting resources in addition to a certain amount of accounting.

Each time a new request is made, the system analyses the allocation of resources

before granting or refusing the resource. The same applies for wait conditions.

The problem with this approach is that, if a process is not permitted to wait

for another process { what should it do instead? At best the system would have

to reject or terminate programs which could enter deadlock, returning an error

condition.

Another method is the following. One might demand that all programs declare

what resources they will need in advance. Similarly all wait conditions should be

declared. The system could then analyse (and re-analyse each time a new process

arrives) the resource allocation and pin-point possible problems.

4.5.3 Detection

The detection of deadlock conditions is also a system overhead. At regular inter-

vals the system is required to examine the state of all processes and determine the

interrelations between them. Since this is quite a performance burden, it is not
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surprising that most systems ignore deadlocks and expect users to write careful

programs.

4.5.4 Recovery

To recover from a deadlock, the system must either terminate one of the partici-

pants, and go on terminating them until the deadlock is cured, or repossess the

resources which are causing the deadlock from some processes until the deadlock

is cured. The latter method is somewhat dangerous since it can lead to incorrect

program execution. Processes usually wait for a good reason, and any interrup-

tion of that reasoning could lead to incorrect execution. Termination is a safer

alternative.

4.6 Summary

In this chapter we have considered the creation and scheduling of processes. Each

process may be described by

� A process identi�er.

� A process control block which contains status information about the sched-

uled processes.

� A private stack for that process.

The scheduling of processes takes place by a variety of methods. The aim is to

maximize the use of CPU time and spread the load for the devices.

Processes can be synchronized using semaphores or 
ags. Protocol construc-

tions such as critical sections and monitors guarantee that shared data are not

modi�ed by more than one process at a time.

If a process has to wait for a condition which can never arise until it has

�nished waiting, then a deadlock is said to arise. The cause of deadlock waiting

is often a resource which cannot be shared. Most operating systems do not try

to prevent deadlocks, but leave the problem to user programs.

Exercises

1. Explain the di�erence between a light weight process and a normal process.

2. What is meant by the critical section of a program?
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3. What is meant by deadlock?

4. Explain why round-robin scheduling would not be appropriate for managing

a print-queue.

5. Devise a combination of �rst-come-�rst-serve (FCFS) and shortest-job-�rst

(SJF) scheduling which would be the `fairest' solution to scheduling a print

queue.

Project

You can learn a lot by solving the following problem. The idea is to make

a time-sharing system of your own.

(a) Make a fake kernel simulator which, instead of executing processes in

memory, reads instructions from a number of �les. You should aim to

share the time spent reading each `process' equally between all tasks.

The output of your kernel should show clearly what is being executed

and when. You should give each process a process identi�er (pid).

The `command language' you are reading in contains instructions like

`abcd 3', `wait 4' etc. i.e. four letters followed by a number.

(b) Add process priorities to each task. You can decide how these are

assigned yourself. Keep a record of how long each process takes to

complete and print status information when each process �nishes. You

can either call the real system clock to do this, or increment a counter

each time an instruction is read. This is like counting `fake CPU

cycles'.

(c) The input �les contain `wait <number>' instructions. Modify your

program so that when one of the tasks reads an instruction `wait 5',

for instance, it waits for process number 5 to �nish before it continues.

The output of the kernel should show this clearly. Hint: use a status

variable which indicates whether the process is `ready' or `waiting'.

(d) Copy and modify the input �les so that a deadlock can occur. Explain

carefully how it occurs. For example, make two processes wait for

each other. Add to your kernel a simple test to detect such deadlock

situations. Decide for yourself how you wish to handle this situation.

Explain what you have chosen to do in your solution.
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(e) Some of the input �les contain `fork' instructions. Modify your code so

that when such an instruction is detected, the current process spawns

a new copy of itself which begins executing from the instruction after

the fork command. The new process should have a di�erent pid and

should have the same priority as the old one.

Try to make your program as structured as possible. The aim is to write

the clearest program, rather than the most e�cient one. When presenting

your results, give a listing of the output of each part and explain the main

features brie
y.
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Chapter 5

Memory and storage

Together with the CPU, the physical memory (RAM) is the most important

resource a computer has. The CPU chip has instructions to manipulate data

only directly in memory, so all arithemtic and logic operations must take place

in RAM.

5.1 Logical and Physical Memory

5.1.1 Physical Address space

Every byte in the memory has an address which ranges from zero up to a limit

which is determined by the hardware (see below). Although bytes are numbered

from zero upward, not every address is necessarily wired up to a memory chip.

Some addresses may be reserved for

� Memory mapped I/O { individual registers belonging to other chips and

hardware devices.

� The interrupt vector { the CPU itself requires some workspace. Usually the

interrupt vector and sometimes the processor stack occupy �xed locations.

� The operating system itself. This takes up a fair chunk of memory. On most

microcomputers this is located in ROM. On multiuser systems upgrades are

much more frequent and it is always loaded from disk into RAM.

The physical address space consists of every possible address to which memory

chips are connected.
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5.1.2 Word size

A word is a small unit of memory, normally just a few bytes. The size of a word

on any system is de�ned by the size of the registers in the CPU. This determines

both the amount of memory a system can address and the way in which memory

is used.

Up to about 1985, all CPUs had eight bit (1 byte) registers, except for the

program counter and address registers which were 16 bits. The largest address

which can be represented in a 16 bit number is 216 = 65; 535 or 64k bytes, and

so these machines could not handle more memory than this. Similarly, since the

accumulator and index registers were all 8 bits wide, no more than one byte could

be manipulated at a time. (This is why bytes have a special status.)

After that came a number of 16 bit processors with larger program counters.

Nowadays most CPUs have 32 bit registers. The DEC alpha machines, together

with the OSF/1 operating system are based on 64 bit technology. The possible

address range and internal number representations are enormous. 64 bit versions

of other versions of unix and NT are also starting to appear.

5.1.3 Paged RAM/ROM

The size of the physical address space is limited by the size of the address regis-

ters in the CPU. On early machines this memory was soon exceeded and it was

necessary to resort to tricks to add more memory. Since it was not possible to

address any more than the limit, these machines temporarily switched out one

bank of memory with another. The new memory bank used the same addresses as

the old, but only one could be accessed at a time. This operation is called paging.

A special hardware paging chip was used to switch between banks, containing a

register which could choose between N banks of memory.

Paging has obvious disadvantages { not all memory can be used at once

and the method is seldom used nowadays since modern CPUs can address much

larger memory spaces. As we shall see later, multi-user systems use paging to

disk. Instead of switching between hardware banks of memeory, they copy the

old contents to disk and reuse the memory which is already there for something

else.

5.1.4 Address binding { coexistence in memory

When a high level language program is compiled, it gets converted into machine

code. In machine code there are no procedure names, or variable names. All

references to data or program code are made by specifying the address at which
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they are to be found. This immediately begs the question: how do we know what

the addresses will be? How do we know where the program is going to be located

in memory?

On microcomputers, this is very straightforward. A program is compiled to

run starting from some �xed address. The system de�nes a certain range of

addresses which can be used by user programs (See �gure 2.1). Whenever the

program is loaded from disk, it is loaded into the memory at the same address,

so that all of the addresses referred to in the program are correct every time.

A problem arises if the system supports several programs resident in memory

simultaneously. Then it is possible that the addresses coded into one program

will already be in use by another. In that case there are three possible options

1. Demand that programs which can coexist be compiled to run at di�erent

addresses. (This means that every program which is to be able to coexist

must know about every other!)

2. Relative addressing. Machine code uses addresses relative to the start ad-

dress at which the program was loaded. The CPU must then add the start

address to every relative address to get the true address. This incurs a

performance penalty. Also, on some microprocessors (e.g. intel 6502), the

relative addressing instructions available are limited to fairly small relative

ranges, due to the size of the CPU registers.

3. Use address binding. Here the idea is that \dummy" addresses are used

when code is generated. When a program is loaded in, the true addresses are

computed relative to the start of the program and replaced before execution

begins. This requires a special program called a loader.

Needless to say, it is the last of these methods which is used in modern systems.

It introduces an important distinction between logical and physical addresses. A

user program writes only to logical addresses, not knowing where the program

will end up in the physical address space. The addresses are converted to physical

addresses automatically.

Again there is a choice. When should this conversion take place?

1. When the program is loaded into memory, once and for all?

2. While the program is being executed?

Initially it would seem that 1. is the better alternative, since 2 incurs a runtime

overhead. In fact 2. is the more 
exible option for reasons which will become

more apparent when we consider paging to disk. By performing the distinction at
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runtime, we have the freedom to completely reorganize the use of physical mem-

ory dynamically at any time. This freedom is very important in a multitasking

operating system where memory has to be shared continually.

???

Figure 5.1: If a program hard codes addresses, there will be collisions when we

try to load a second program into memory. It is therefore imporant to have a

way of allocating addresses dynamically.

5.1.5 Shared libraries

The concept of shared libraries lies somewhere in the grey zone between compiling

and linking of programs and memory binding. We introduce it here for want of a

better place. The advantages of shared libraries should be clearly apparent by the

end of this section. On windows systems, shared libraries are called dynamically

loaded libraries or dll's.

On older systems, when you compile a program, the linker attaches a copy of

standard libraries to each program. Because of the nature of the linker, the whole

library has to be copied even though perhaps only one function is required. Thus

a simple program to print \hello" could be hundreds or thousands of kilobytes
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long! This wastes considerable amount of disk space, copying the same code for

every program. When the program is loaded into memory, the whole library is

loaded too, so it is also a waste of RAM.

The solution is to use a run-time linker, which only loads the shared library

into RAM when one of the functions the library is needed. The advantages and

disadvantages of this scheme are the following.

1. Considerable savings in disk space are made, because the standard library

code is never joined to the executable �le which is stored on disk, thus there

is only one copy of the shared library on the system.

2. A saving of RAM can also be made since the library, once loaded into RAM

can often be shared by several programs. See under segmentation below.

3. A performance penalty is transferred from load-time to run-time, the �rst

time a function is accessed: the library must be loaded from disk during

the execution of the program. In the long run, this might be outweighed by

the time it would otherwise have taken to load the library for n programs,

which now can share it. Also, the amount of RAM needed to support n

programs is now considerably less.

5.1.6 Runtime binding

Keeping physical and logical addresses completely separate introduces a new level

of abstraction to the memory concept. User programs know only about logical

addresses. Logical addresses are mapped into real physical addresses, at some

location which is completely transparent to the user, by means of a conversion

table. The conversion can be assisted by hardware processors which are specially

designed to deal with address mapping. This is much faster than a purely software

solution (since the CPU itself must do the conversion work). The conversion is,

at any rate, performed by the system and the user need know nothing about it.

The part of the system which performs the conversion (be it hardware or

software) is called the memory management unit (MMU). The conversion table

of addresses is kept for each process in its process control block (PCB) and mmust

be downloaded into the MMU during context switching (this is one reason why

context switching is expensive!). Each logical address sent to the MMU is checked

in the following way:

� Does the logical address belong to the process? If not, generate an owner-

ship error (often called a segmentation fault, as we shall see below).
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Shared lib

Dynamic link Dynamic linkStatic link

Copied lib

Figure 5.2: Statically linked �les append the entire library to each compiled pro-

gram. With shared libraries we can save disk and memory by linking a program

dynamically with a single copy of the library.

� Translate the logical address into a physical address.

The ownership checking is performed at the logical level rather than the physical

level because we want to be able to use the physical memory in the most general

possible way. If we bind physical addresses to a special user it means that we

cannot later reorganize the physical memory and part of the point of the exercise

is lost. On the other hand, if users are only bound to logical addresses, we can

�ddle as much as we like with the physical memory and the user will never know.

One more question must be added to the above.

� Are the data we want to access actually in the physical memory? As we

shall see later in this chapter, many systems (the most immediate example

of which is UNIX) allow paging to disk.

We shall return to this in the next section.

The conversion of logical addresses into physical
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addresses is familiar in many programming languages

and is achieved by the use of pointers.

Instead of referring to data directly, one uses a

pointer variable which holds the true address at which

the data are kept. In machine language, the same scheme

is called \indirect addressing".

The di�erence between logical addresses and pointers

is that all pointers are user objects, and thus pointers

only point from one place in logical memory to another place

in logical memory. The mapping from logical to physical is

only visible to the designer of the system.

How is the translation performed in practice? To make the translation

of logical to phyical addresses practical, it is necessary to coarse grain the mem-

ory. If every single byte-address were independently converted, then two 32 bit

addresses would be required for each byte-address in the table and the storage

space for the conversion table would be seven times bigger than the memory of

the system!

To get around this problem, we have to break up the memory into chunks of

a certain size. Then we only need to map the start address of each block, which

is much cheaper if the blocks are big enough. There are two schemes for coarse

graining the memory in this way:

1. Give each process/task a �xed amount of workspace (a �xed size

vector) which is estimated to be large enough to meet its needs. Only the

base address of the workspace and the size need to be stored i.e. the whole

vector in logical memory is mapped into a corresponding vector in physical

memory. We don't know where it lies in the physical memory, but the

mapping is one-to-one.

The disadvantage with this scheme is that either too much or too little

memory might be allocated for the tasks. Moreover { if only a small part of

the program is actually required in practice, then a large amount of memory

is wasted and cannot be reused.

2. Coarse grain or \quantize" the memory in smallish pieces, called

pages. Each page is chosen to have the same �xed size (generally 2-4kB on

modern systems), given by some power of 2 bits (this varies from system

to system). The base address of each page is then stored in the conversion

table (the length is known, since it is �xed). A unit of logical memory is
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called a page, whereas a unit of physical memory is called a frame. Apart

from the di�erence in names, they must of course have the same size.

The second of these possibilities is an attractive propostion for a number of

reasons. By breaking up the memory into smaller pieces, we have the possibility

of reorganizing (reusing) each piece separately. Large programs need not be

entirely in memory if they are not needed. Also, if two programs use the same

code, they can share pages, so two logical pages map into the same physical

frame. This is advantageous for shared-libraries.

Page numbers and addresses

Page addressing is a simple matter if the size of one page is a

power 2n. Since addresses are stored in bits, page numbers can be

assigned by simply throwing away the lower bits from every address.

It is analogous to counting in blocks of a thousand, in regular base 10.

To number blocks of size 1000 in base 10, one simply has to

drop the lowest three digits. Thus to store the mapping from

logical to physical here, we must cover all addresses from 0000

to 9999. Without pages, this would require 9999 addresses.

with paging we need only 9 addresses, since 7123

and 7663 are both in page 7, for instance.

An important consequence of the mapping of pages, is that what appears to

the user as 10MB of sequential memory may in reality be spread in some random

order just about anywhere in physical memory. The tables which map logical to

physical memory are called the page table and the frame table, and are stored per

process and loaded as a part of context switching.

5.1.7 Segmentation - sharing

From the point of view of the system: sharing, process management and ef-

�ciency, it is highly convenient to view the memory for di�erent processes as

being segmented.

A segment is a convenient block of logical memory which is assigned to a

process when it is executed. The memory given to any process is divided up into

one or more segments which then belong to that process. The purpose of segments

is to help the system administrate the needs of all processes according to a simple

paradigm. Each segment of memory is administrated separately and all of the

checks on valid addressing are made on each segment. It is therefore convenient

to use separate segments for logically separate parts of a program/process.
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� Code segment - program code

� Data segment - the program stack and dynamically allocated data.

� Arrays can conveniently be placed in a segment of their own { that way,

array bound-checking will be performed automatically by the hardware of

the system.

argv[]  and  envp[]

Stack

Heap

Unitialized data

Initialized data (static)

Text / Code

Initialized to zero by exec()

Read from program

by exec()

LOW ADDRESS

HIGH ADDRESS

Figure 5.3: The UNIX process model, showing the various segments used by

each process. The stack contains all local (automatic) variables and the heap is

allocated by malloc().

The segment idea can all be built on top of the page/frame concept above by

demanding that segments be a whole number of pages. That way, we retain the

advantages of the page system. Segmentation is an additional overhead which

relates to the sharing of logical memory between processes. The page overhead

relates to the mapping of logical to physical addresses.

Memory addressing with segments is like plotting points in a plane with co-

ordinates (x; y). Addresses are written (segment,offset).

81



5.1.8 The malloc() function

The C ++ operator new which dynamically allocates memory is a wrapper func-

tion for the C library function malloc(). When we use new, the compiler trans-

lates this into a call to malloc(). As an example, let's ask what happens when

we call the function malloc(). malloc is part of the standard C library on any

system, but we shall only be concerned with how it is implemented in BSD UNIX.

The function is used to obtain a pointer to (the address of) a block of memory n

bytes long. For example,

pointer= malloc(n);

Since malloc is a user-level command, it obtains logical memory for the caller.

The acquisition of physical memory is taken care or by the system on behalf of

malloc, by deeper level kernel commands.

In order to obtain n bytes of memory, malloc must normally acquire too much

memory. This is because the smallest unit of memory is a page. This when

malloc is called, it checks to see if the data segment of the current process has

n free bytes. If the space already exists within the pages already allocated to

the process, malloc uses this space and updates the free-memory list. If there is

not su�cient space, malloc makes a call to the brk() function, which tries to

extend the size of the data segment. In most cases, not all the memory obtained

is required. The most extreme example would be the allocation of one char

variable (one single byte). Then the remainder of the page is free, and is added

to the free memory list.

The next time malloc is called, it tries to use the remainder of the last

allocated page, or any memory in the same segment which it allocated earlier,

but has since been freed.

The fact that malloc divides up pages of logical memory is of no consequence

to the memory management system, since each process maintains its own free

memory list for the data segment. Since the segment always consists of a whole

number of pages there is no con
ict with the page mapping algorithm.
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Figure 5.4: Levels of mapping from user allocation to physical memory.

5.1.9 Page size, fragmentation and alignment

The process of allocating memory is really only half the story of memory man-

agement. We must also be able to de-allocate or free memory. When memory

is freed from a segment, it leaves a hole of a certain size, which is added to the

free-list. Eventually, the number of these holes grows quite large and the memory

is said to become fragmented.

Fragmentation can lead to wasted resources. We would clearly like to re-use

freed memory as far as possible, but if the holes are not big enough to �t the

data we need to allocate then this is not possible.

Another technical problem which leads to fragmentation and wastage is align-

ment. Alignment is a technical problem associated with the word-size and design

of the CPU. Certain memory objects (variables) have to be stored starting from

a particular (usually even) address. This is because the multiple-byte registers

of the CPU need to align their \footprints" to the addresses of the memory. Or,

by virtue of the word-size of the system, the CPU regards the addresses as being

e�ectively multiples of the word-size. In order to meet this requirement, memory

sometimes has to be `padded' out with empty bytes { which are therefore wasted.

Fragmentation occurs at two levels:

� Internal fragmentation. This is space wasted by malloc in trying to �t data

into a segment (logical memory).

� External fragmentation. This is space lying between segments in the phys-

ical memory. (There are never holes between segments in logical memory

since we can always just renumber the logical addresses to remove them {

they are not real anyway.)

See the �gure below.
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Figure 5.5: Fragmentation occurs because we allocate memory in blocks of dif-

ferent sizes and then free the blocks. Fragments are show as the white gaps

between allocated objects. Internal fragmentation happens inside segments of

logical memory when programs like malloc divide up the segment space. Exter-

nal fragmentation occurs in the mapping of logical segments to physical segments

when there are gaps between the segments in physical memory. External frag-

mentation is cured by only mapping pages as in �gure 5.4.

Note that external fragmentation is formally eliminated by the page concept.

With pages, every object in physical memory is always the size of a page or frame,

every hole must also be the size of a page and thus one is guaranteed to be able to

�t a page block into a page hole. To some extent this is a cheat though, because

the problem is only transferred from external to internal fragmentation { but

such is the nature of de�nitions.

Internal fragmentation can be minimized by choosing a smaller page size for

the system. That means that, on average, fewer bytes will be wasted per page.

Of course, the system overhead grows larger as the page size is reduced, so as

usual the size of pages is a tradeo� between two competing requirements.

At the user level, it is possible to avoid of the fragmentation problem when

writing programs. For example, if a program allocates and frees memory objects

of random sizes, it will be a random issue whether or not the holes left over can

be used again. If, on the other hand, a program only allocates memory in �xed

size structures (like C's struct and union variable types), then every hole will

be the same size as every new object created and (as with pages) it will always

be possible to �t new data into old holes. This is a program design consideration.

Unions were designed for precisely this kind of purpose.
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5.1.10 Reclaiming fragmented memory (Tetris!)

There are two strategies for reclaiming fragmented memory.

1. Try to �t data into the holes that already exist.

2. Reorganize the data so that all the holes are regrouped into one large hole.

The second alternative clearly represents a large system overhead and is seldom

used.

The �rst method can be implemented in one of three ways. Given a free-list

of available holes, one may choose a space on the basis of

� First �t. Choose the �rst hole which will do.

� Best �t. Choose the smallest hole that will do.

� Worst �t Choose the largest hole (which in some screwy sense leaves the

biggest remainder { for what it's worth).

The �rst two are preferable, but neither works best in all cases. The criterea are

i) minimization of fragmentation and ii) minimization of the allocation overhead.

The �rst is perhaps preferable, since it is fastest.

5.2 Virtual Memory

5.2.1 Paging and Swapping

Virtual memory is a way of making the physical memory of a computer system

e�ectively larger than it really is. Rather than using mirrors, the system does

this by determining which parts of its memory are often sitting idle, and then

makes a command decision to empty their contents onto a disk, thereby freeing

up useful RAM.

As we noted earlier, it is quite seldom that every byte of every program is in

use all of the time. More often programs are large and contain sections of code

which are visited rarely if ever at all by the majority of users { so if they are not

used, why keep them in RAM?

Virtual memory uses two methods to free up RAM when needed.

� Swapping. An entire process, including code segment and data segments

is expunged from the system memory.

� Paging. Only single pages are swapped out.
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Of course, the simplest way to clear a space in RAM is to terminate some

processes, but virtual memory is more subtle than that. The idea is to free RAM

only temporarily, with the intention of copying the data back again later. All of

this should happen in such a way that the user of the system do not realize that

it is happening.

Swapping and paging dump the system memory in special disk caches. Nor-

mally these disk areas are not part of the usual �le system structure, since the

overhead of maintaining a �le system is inapropriate when only the system needs

to use the disk. Instead, the system stores swap �les in large contiguous blocks,

sacri�cing utilization of space for speed. Some systems also allow swapping to a

special �le in the normal �lesystem, which has a reserved size.

In UNIX, there both methods are available. On BSD systems, normally a

whole disk partition (see next section) is reserved for swapping and paging. (This

is called the swap partition for historical reasons.) If this fails to provide enough

space, under SunOS the system administrator can either add other partitions, or

use the mkfile command to create a swap �le on a normal in a part of the �le

system where there is su�cient space. In the system 5 based HPUX operating

system, the normal swap area is invisible to the user. Additional swap space can

simply be grabbed from some part of the �lesystem, by the kernel, if the system

goes short. Eventually this can lead to a paradoxical situation in which the user

sees nothing on the disk, but the OS declares that the disk is full!

Early versions of UNIX used swapping exclusively when RAM was in short

supply. Since BSD 4.3, all systems which have learned something from the BSD

project use paging as their main method of virtual memory implementation.

5.2.2 Demand Paging - Lazy evaluation

You might ask { if a program has a lot of pages which do not get used, what is

the purpose of loading them in the �rst place and then swapping them out? One

could simply make a rule that no page should be brought into memory until it

were needed. Such a scheme is possibile, but few systems allow a program to run

if it cannot be loaded fully into memory on start-up. One argument against this

extreme form of paging is that, it could be dangerous to start a program which

was unable to complete because it was too large to run on the system, under

the conditions of the moment. If it started to run and then crashed or exited, it

could compromise important data. (The BSD UNIX system allocates su�cient

space in its swap area to swap or page out each entire process as it begins. That

way, none of them will ever run out of swap during execution.)

On the other hand, if a program can be loaded in, it is most likely safe { so

86



if we then discover that large parts of the program are never used, we can page

them out and never bother to page them in again.

This is an example of what is called lazy evaluation. A lazy pager never brings

a page back into memory until is has to i.e. until someone wants to use it. This

can save a considerable amount of I/O time. Another name for this is demand

paging, since it only occurs on demand from user processes.

It is now easy to see how the paging concept goes hand in hand with the logical

memory concept: each time the system pages out a frame of physical memory, it

sets a 
ag in the page table next to the logical page that was removed. If a process

attempts to read from that page of logical memory the system �rst examines the


ag to see if the page is available and, if it is not, a page fault occurs.

A page fault is a hardware or software interrupt (depending on implementa-

tion) which passes control to the operating system. The OS proceeds to locate

the missing page in the swap area and move it back into a free frame of physical

memory. It then binds the addresses by updating the paging table and, when

control returns to the waiting process, the missing page is automagically restored,

as if it had never been gone.

Notice, that the location of the physical frame is completely irrelevant to the

user process. A frame does not have to be moved back into the same place that

it was removed from, because the runtime binding of addresses takes care of its

relocation.

5.2.3 Swapping and paging algorithms

How does the system decide what pages or processes to swap out? This is another

problem in scheduling. A multitude of schemes is available. Here we shall only

consider some examples.

Consider the UNIX system a moment. Before paging was introduced, the

only way that memory segments could increase their size was to

1. Try to look for free memory at the end of the current segment and add it

to the current segment.

2. Try to allocate a new, larger segment, copy the data to the new segment

and deallocate the old one.

3. Swap out the process, reallocate and swap in again.

In this use of swap space, it is clear that a process is swapped out while it is

waiting for a suitable hole in to appear in the memory. This might take a long
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time and it might be immediate. Another case for swapping out a job is if it has

been idle (sleeping) for a long time.

On a BSD-like UNIX system, the �rst three processes to be started are 1) the

swapper, 2) init, the and 3) the pagedaemon. The pagedaemon is responsible

for examining the state of the page-table and deciding which pages are to be

moved to disk. Normally the swapper will not swap out processes unless they

have been sleeping for a long time, because the pager will �rst strip them of their

inactive pages. It will begin to swap out processes however, if the average load on

the system is very high. (The load average is a number based on the kernel's own

internal accounting and is supposed to re
ect the state of system activity.) This

gives `cheap' processes a chance to establish themselves. It is the pagedameon

which makes the paging decisions. By copying read-only segments to the swap

area at load time, the running overhead of paging out read-only data is removed,

since the data are always where we need them in swap space and never change. In

modernized versions of UNIX, such as the Solaris systems by Sun Microsystems,

read only pages from the code segment are thrown away when they are selected

for swap out and then read in from the �lesystem if needed again. Moreover,

data pages are only allocated swap space when they are forced out of physical

memory. These optimizations re
ect the fact that modern systems have more

physical memory than previously; also disks are getting faster.

Let us now look more generally at how paging decisions are made. The most

important aspect of paging is that pages can still be accessed even though they are

physically in secondary storage (the disk). Suppose a page fault occurs and there

are no free frames into which the relevant data can be loaded. Then the OS must

select a victim: it must choose a frame and free it so that the new faulted page

can be read in. This is called (obviously) page replacement. The success or failure

of virtual memory rest on its abililty to make page replacement decisions. Certain

facts might in
uence these algorithms. For instance, if a process is receiving I/O

from a device, it would be foolish to page it out { so it would probably I/O locked

into RAM. Here are some viable alternatives for page replacement.

FIFO - �rst in �rst out

Consider the �gure below. Here we see the frames in the physical memory of a

paging system. The memory is rather small so that we can illustrate the principles

of contention for pages most clearly.
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Figure 5.6: Illustration of the FIFO page replacement scheme.

The simplest way of replacing frames is to keep track of their age (by storing

their age in the frame table). This could either be the date, as recorded by the

system clock, or a sequential counter. When a new page fault occurs, we can

load in pages until the physical memory is full { thereafter, we have to move out

pages. The page which has been in memory longest is then selected as the �rst

to go.

This algorithm has the advantage of being very straightforward, but its per-

formance can su�er if a page is in heavy use for a long period of time. Such a

page would be selected even though it was still in heavy use.

Second chance

A simple optimization we can add to the FIFO algorithm is the following. Sup-

pose we keep a reference bit for each page in the page table. Every time the

memory management unit accesses a page it sets that bit to 1. When a page

fault occurs, the page replacement algorithm looks at that bit and { if it is set

to 1 { sets the bit to 0 but jumps over it and looks for another page.

The idea is that pages which are frequently use will have their bits set often

and will therefore not get paged out. Of course, this testing incurs an overhead.

In the extreme case that all pages are in heavy use the page algorithm must cycle
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through all the pages setting their bits to zero before �nding the original page

again. Even then, it might not �nd a page to replace, if the bit was set again

while it was looking through the others. In such a case, the paging system simply

fails.

LRU - least recently used

The best possible solution to paging would be to replace the page that will not

be used for the longest period of time { but unfortunately, the system has no way

of knowing what that is. A kind of compromise solution is to replace the page

which has not been used for the longest period (see the �gure below). This does

not require a crystal ball, but it does require some appropriate hardware support

to make it worthwhile. As with all good ideas, it costs the system quite a lot to

implement it.
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.

.

.

.

.

.

.

..

.

.

.
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.

.

Frame table Page fault

time

Pages used

1 2 3 1, 34

1 4 3 1, 45

1 4 5 2 4, 2

2 4 5 1 2, 4, 5

(Fifo) 2 1 5 17

2 7 5

Figure 5.7: LRU page replacement algorithm. When there is a tie, the algorithm

uses FIFO.

Two possibilities for such an implementation are the following.

� We record the time at which each page was last referenced. Unlike the

FIFO scheme above, this means that we have to update the time-stamp

every single time memory is referenced, instead of only each time a page is
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replaced. If the copying operation takes, say, �ve CPU instructions (jump

to update routine, locate page table entry, load system clock time, store

system clock time, return), this means { roughly speaking { that the system

is slowed down by a factor of around �ve. This is an unacceptable loss, so

unless the memory management unit can do something fancy in hardware,

this scheme is not worth the system's time.

� We keep a stack of page addresses, so that the page number of the most

recently accessed page is always on the top of the stack. Although this

sounds cheaper in principle, since the page replacement algorithm never

has to search for a replacement { it just looks on top of the stack { it still

results in a large system overhead to maintain the stack. We must update a

data stucture which requires process synchronization and therefore waiting.

Again, without special hardware, this is not economical.

In practice, many systems use something like the second-chance algorithm above.

The UNIX pagedaemon uses this approach.

5.2.4 Thrashing

Swapping and paging can lead to quite a large system overhead. Compared to

memory speeds, disk access is quite slow { and, in spite of optimized disk access

for the swap area, these operations delay the system markedly. Consider the

sequence of events which takes place when a page fault occurs:

1. Interrupt / trap and pass control to the system interrupt handler.

2. Save the process control block.

3. Determine cause of interrupt { a page fault.

4. Consult MMU { is the logical address given inside the process' segment i.e.

legal?

5. Look for a free frame in the frame table. If none is found, free one.

6. Schedule the disk operation to copy the required page and put the process

into the waiting state.

7. Interrupt from disk signals end of waiting.

8. Update the page table and schedule the process for running.
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9. (On scheduling) restore the process control block and resume executing the

instruction that was interrupted.

Such a sequence of operations could take of the order or milliseconds under

favourable conditions (although technology is rapidly reducing the timescale for

everything). It is possible for the system to get into a state where there are so

many processes competing for limited resources that it spends more time servic-

ing page faults and swapping in and out processes than it does executing the

processes. This sorry state is called thrashing.

Thrashing can occur when there are too many active processes for the available

memory. It can be alleviated in certain cases by making the system page at an

earlier threshold of memory usage than normal. In most cases, the best way to

recover from thrashing is to suspend processes and forbid new ones, to try to

clear some of the others by allowing them to execute. The interplay between

swapping and paging is important here too, since swapping e�ectively suspends

jobs.

5.3 Disks: secondary storage

The physical memory, as we have already seen, is not large enough to accomodate

all of the needs of a computer system. Also, it is not permanent. Secondary

storage consists of disk units and tape drives onto which data can be moved

for more permanent storage. Apart from the actual physical di�erences between

tapes and disks, the principles involved in controlling them are the same, so we

shall only consider disk management here.

5.3.1 Physical structure

Even disks come in di�erent shapes and sizes. The most obvious distinction is

between 
oppy disks, diskettes and hard-disks. Floppy disks and diskettes consist

of a single disk of magnetic material, while hard-disks normally consist of several

stacked on top of one another. Hard disks are totally enclosed devices which are

much more �nely engineered and therefore require protection from dust. A hard

disk spins at a constant speed, while the rotation of 
oppy drives is switched on

and o�. On the Macintosh 
oppy drives have a variable speed operation, whereas

most 
oppy drives have only a single speed of rotation.

As hard drives and tape units become more e�cient and cheaper to produce,

the role of the 
oppy disk is diminishing. We look therefore mainly at hard drives.
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Cylinder group

Track ( � heads = cylinder)
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Hard disk

Figure 5.8: Hard disks and 
oppy disks.

Looking at the �gure, we see that a hard disk is composed of several physical

disks stacked on top of each other. A separate read head is provided for each

surface. Although the disks are made of continuous magnetic material, there is

a limit to the density of information which can be stored on the disk. The heads

are controlled by a stepper motor which moves them in �xed-distance intervals

across each surface. i.e. there is a �xed number of tracks on each surface. The

tracks on all the surfaces are aligned, and the sum of all the tracks at a �xed

distance from the edge of the disk is called a cylinder.

To make the disk access quicker, tracks are usually divided up into sectors { or

�xed size regions which lie along tracks. When writing to a disk, data are written

in units of a whole number of sectors. (In this respect, they are similar to pages

or frames in physical memory.) On some disks, the sizes of sectors are decided

by the manufacturers in hardware. On other systems (often microcomputers)

it might be chosen in software when the disk is prepared for use (formatting).

Normally sectors are 512 bytes, or half a kilobyte.

Because the heads of the disk move together on all surfaces, we can increase

read-write e�ciency by allocating blocks in parallel across all surfaces. Thus, if

a �le is stored in consecutive blocks, on a disk with n surfaces and n heads, it

could read n sectors � sectors-per-track without any head movement.
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When a disk is supplied by a manufacturer, the physical properties of the disk

(number of tracks, number of heads, sectors per track, speed of revolution) are

provided with the disk. An operating system must be able to adjust to di�erent

types of disk. Clearly sectors per track is not a constant, nor is necessarily the

number of tracks. The numbers given are just a convention used to work out a

consistent set of addresses on a disk and may not have anything to do with the

hard and fast physical limits of the disk.

To address any portion of a disk, we need a three component address consisting

of (surface, track, sector).

5.3.2 Device drivers and IDs

A hard-disk is a device, and as such, an operating system must use a device

controller to talk to it. Some device controllers are simple microprocessors which

translate numerical addresses into head motor movements, while others contain

small decision making computers of their own.

The most popular type of drive for larger personal computers and workstations

is the SCSI drive. SCSI (pronounced scuzzy) (Small Computer System Interface)

is a protocol and now exists in four variants SCSI 1, SCSI 2, and fast SCSI

2, SCSI 3. SCSI disks live on a data bus which is a fast parallel data link to

the CPU and memory, rather like a very short network. Each drive coupled to

the bus identi�es itself by a SCSI address (0::6) and each SCSI controller can

address up to seven units. If more disks are required, a second controller must

be added. SCSI is more e�cient at multiple access sharing than other disk types

for microcomputers.

In order to talk to a SCSI disk, an operating system must have a SCSI device

driver. This is a layer of software which translates disk requests from the op-

erating system's abstract command-layer into the language of signals which the

SCSI controller understands. The operating system generally provides two logical

devices for each SCSI address: a raw device and a bu�ered device. On BSD UNIX

systems these are referred to as /dev/?? and /dev/r??.

5.3.3 Checking data consistency and formatting

Hard drives are not perfect: they develop defects due to magnetic dropout and

imperfect manufacturing. On more primitive disks, this is checked when the disk

is formatted and these damaged sectors are avoided. If sector becomes damaged

under operation, the structure of the disk must be patched up by some repair

program. Usually the data are lost.
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On more intelligent drives, like the SCSI drives, the disk itself keeps a defect

list which contains a list of all bad sectors. A new disk from the manufacturer

contains a starting list and this is updated as time goes by if more defects occur.

Formatting is a process by which the sectors of the disk are

1. (if necessary) created by setting out `signposts' along the tracks,

2. labelled with an address, so that the disk controller knows when it has

found the correct sector.

On simple disks used by microcomputers, formatting is done manually. On other

types, like SCSI drives, there is a low-level formatting already on the disk when

it comes from the manufacturer. This is part of the SCSI protocol, in a sense.

High level formatting on top of this is not necessary, since an advanced enough

�lesystem will be able to manage the hardware sectors.

Data consistency is checked by writing to disk and reading back the result. If

there is disagreement, an error occurs. This procedure can best be implemented

inside the hardware of the disk { modern disk drives are small computers in their

own right. Another, cheaper way of checking data consistency is to calculate a

number for each sector, based on what data are in the sector and store it in the

sector. When the data are read back, the number is recalculated and if there is

disagreement then an error is signalled. This is called a cyclic redundancy check

(CRC) or error correcting code.

Some device controllers are intelligent enough to be able to detect bad sectors

and move data to a spare `good' sector if there is an error. Disk design is still

a subject of considerable research and disks are improving both in speed and

reliability by leaps and bounds.

5.3.4 Scheduling

The disk is a resource which has to be shared. It therefore has to be scheduled

for use, according to some kind of queue system. If a disk only had one customer

at a time, a �rst-come �rst-served FCFS policy would be adequate. However {

requests both to read and to write may come randomly from any user process or

from the system on a multitasking system and so we must think carefully about

how to service them.

Since a disk is hardware, and involves mechanical movement, it can literally

be destroyed by asking it to do too much. One of the aims of scheduling a disk

device is to minimize wear on the disk surface. Another aim is to maximize

the speed of access. If the disk heads are being asked to go backwards and
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forwards randomly many times a second, much time can be lost. Floppy disks

are particularly susceptible to errors caused by misalignment between disk and

disk head. The more a hed moves rapidly backwards and forwards, the more

likely it is to miss its intended location and misread data. When this happens

the data have to be read again and the whole process takes much longer.

Hard disks are more robust than 
oppies, but the algorithms for scheduling

the disk nevertheless take into account the physical issue of movement.

FCFS

As always, the simplest option for scheduling is the �rst-come �rst-serve method.

This can be thought of in two ways: i) that the �rst user to obtain the disk gets to

use it uninterrupted until his or her �le access is �nished, or ii) every individual

disk access can be sheduled on a FCFS basis. On a busy system, ii) can lead to

wild thrashing of the disk heads as di�erent processes �rst try to move them one

way and then another.

The AmigaDOS system (at least up to 1.3) su�ered from this problem even

if there were only two processes. The system tried to time-share the disk which

resulted in a more than �fty percent loss in performance. The user could wait

for minutes while the system tried to thrash out a job which could have taken

seconds if one job had been allowed to complete �rst without interruption.

SSTF - Shortest seek time �rst

To get the fastest response (ignoring mechanical restrictions) we could try to

sort disk requests according to those which will cause the smallest movements

of the disk head. Again, this does not protect the head from direction reversals,

only from large movements. Also, like all priority scheduling, it could lead to

starvation of some requests.

SCAN, C-SCAN and LOOK

The scanning method is to order requests so that we only move the disk head

in one direction at a time. Since the disk heads only move if we need to change

tracks, all requests are ordered according to which track they lie on. The heads

start at the �rst track and move uni-directionally to the next request and then

the next etc. When they reach the inside of the disk, they reverse direction and

come back again. This is also called the elevator or lift algorithm since this is the

way many elevators are scheduled.
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The C-SCAN or circular scan is a slight variant: when the heads hit the end

track, they come immediately back to the beginning and start again, so that they

always move in the same direction.

Of course, neither algorithm needs to go as far as the last track if there are no

requests for data there. The LOOK algorithm is the same as SCAN or C-SCAN

but does not move into areas of the disk where no requests are waiting.

SCAN

C-SCAN

Look

Figure 5.9: Scanning disk scheduling algorithms.

Which method?

The choice of scheduling algorithm depends on the nature of disk usage. For

heavily use disks the SCAN / LOOK algorithms are well suited because they

take care of the hardware and access requests in a reasonable order. There is no

real danger of starvation, especially in the C-SCAN case.

The arrangement of data on a disk play an important role in deciding the

e�ciency of data-retrieval. In the next section we shall look at the high-level

structures which the operating system places on top of sectors. This determines

the level at which we are most used to seeing the disk.
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5.3.5 Partitions

For the purposes of isolating special areas of the disk, most operating systems

allow the disk surface to be divided into partitions. A partition (also called a

cylinder group) is just that: a group a cylinders which lie next to each other.

By de�ning partitions we divide up the storage of data to special areas, for

convenience.

For instance, it is quite normal to keep the system software in one partition

and user data in another partition. That way, when one makes a back-up of the

disk, user data can easily be kept separate from system data. The separation

becomes a hardware matter.

Partitions are supported on MS-DOS, Macintosh, BSD UNIX, AmigaDOS

etc. Remarkably there are versions of system 5 UNIX which do not support

partitions. BSD UNIX partitions are a good example, and since we are focussing

on UNIX we shall discuss its partitions in more detail.

BSD UNIX uses a special convention for the partitions on each disk. Each

disk may have up to eight logical partitions which are labelled from a to h.

Partition Usage

a root and boot partition

b swap partition

c the whole disk

d anything

e anything

f anything

g anything

h anything

Each partition is assigned a separate logical device and each device can only

write to the cylinders which are de�ned as being its own. Partitions can overlap,

because they are just limits. Thus, if we read from logical device c, which is

de�ned as the whole disk, we could, in principle read from the whole disk, whereas

if we use logical device b we may only read from the swap partition.

To use a partition we have to create a �lesystem on it. This involves reserving

space workspace for the operating system and suitable markers for navigating

over the surface of the disk.. Since partitions are de�ned for convenience, it does

not matter that they overlap. What is important is that the �lesystems on two

partitions do not overlap! This is extremely important. If two �lesystems overlap,

they will destroy each other!
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In BSD UNIX, partitions are created by editing a table which is downloaded

into the device driver. In Sun's SunOS and Solaris operating systems, a special

command format is used to make partitions. The newfs command is used to

create a �lesystem.

Once a partition has been created, it has to be mounted in order to be reach-

able from the directory structure of the �lesystem. The mount action is analagous

to the opening of a �le. On the Macintosh and Amiga operating systems, new

disks are immediately sensed by the system and are mounted. In the Macintosh

case (which has only a pictoral graphic user interface) new partitions or disks are

mounted on the desktop at the root level. Under AmigaDOS, each new parti-

tion becomes a logical device and is given a logical device name which identi�es

the disk. If the Workbench (graphical user interface) is running, the disks ap-

pear together with their device names on the workbench in the same way as the

Macintosh. Otherwise they appear in the mountlist.

In UNIX a partition is mounted using the command mount. For example a

command like

mount /dev/sd0g /user-data

would mount partition g on disk number zero onto the directory /user-data. The

result would be that all �les on that partition would appear under the directory

/user-data. A prerequisite for mounting a UNIX partition is that the partition

must contain a �lesystem.

5.3.6 Stripes

In recent years some UNIX systems (particularly Hewlett Packard) have experi-

mented with disk striping. Disk striping is a way of increasing the disk transfer

rate up to a factor of N , by splitting �les across N di�erent disks. Instead of

saving all the data from a given �le on one disk, it is split across many. Since

the N heads can now search independently, the speed of transfer is, in principle,

increased manifold. The disadvantage with disk striping is that, if one of the N

disks becomes damaged, then the data on all N disks is lost. Thus striping needs

to be combined with a reliable form of backup in order to be successful.

5.4 Disk Filesystems

A �lesystem is a high level interface to the disk, which allows users of a system

to give names to �les, organize �les in directories and separate o� special areas

using partitions. A �lesystem is said to be created on a disk by running a special
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FILE

Figure 5.10: Disk striping: �les are spread in parallel over several disks.

program. On many systems this is identi�ed with formatting the disk and involves

writing address data to the surface as well as reserving system workspace on the

disk.

5.4.1 Hierachical �lesystems and links

The most popular type of �lesystem interface is the hierachical one. Earlier

operating systems like MTS did not have a directory structure. Each user had a

separate login area, but the login area was not able to hold subdirectories. The

hierachical �le structure is a very convenient way of organizing data in directories,

sub-directories and so on. But this rigid preoccupation with a hierachical ordering

is not always the most appropriate one.

Look at the diagram below.
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Figure 5.11: Links - deviations from a strict hierachical �lesystem.

/usr/local/bin/prog.exe is a link to /usr/local/mysoftware/prog.exe and

/local is a link to /usr/local

Suppose are in the directory /usr/local/mysoftware, which contains a com-

plete package of software that we have obtained in all of its sub-directories. Since

the package is a unit, we would like to keep all of its �les together and preserve

that unity { but it might also be necessary for some of the �les in the package

to be installed in special places, elsewhere in the �le tree. For example, the

executable binaries might have to be placed in /usr/local/bin, and some con-

�guration �les for the system might have to be placed in a special directory where

the operating system can �nd them.

The con
ict of interest can be solved by introducing links. Links are objects

which appear in the �le system and look just like �les. In fact they are pointers

to other �les which are elsewhere in the strict hierarchy. Links enable one �le to

appear to exist at two or more places at the same time. A link is not a copy of

a �le, it is an alias for the true route to the �le through the hierachical system,

but for all intents and purposes it looks like another instantiation of the �le. The
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Macintosh �lesystem refers to such links as `aliases'.

The UNIX �le system makes a distionction between hard links and symbolic

links. A symbolic links is literally just a small �le which contains the name of

the true �le. We can create a symbolic link to a �le which does not exist, and

delete the �le to which a symbolic link points. A hard link is more permanent

however. In order to delete a �le with hard links, all of the hard links must be

removed. This requires a list of links to be associated with each �le. The special

�les `.' and `..' are hard links to their parent directories.

When links jump across di�erent branches of the �le tree, the directory struc-

ture is sometimes called an acyclic graph.

5.4.2 File types and device nodes

Extremely elaborate �lesystem interfaces can be made, which distinguish between

di�erent types of �le and which permit or disallow certain operations on the

basis of �le type. The Macintosh operating system determines whether �les are

executable or text �les. Clicking on an executable �le loads and runs the program,

whilst clicking on an application �le loads the application which created it and

then tells the program to load that �le.

MS-DOS distinguishes �le types by using �lename extensions like .EXE,

.COM, .TXT for executable �les, relocatable executables and text�les.

The UNIX system does not make any particular distinction on the basis of

�lenames. Instead it keeps a 
ag to say whether a �le is executable or not. If

a �le is not marked as executable, UNIX will not try to run it. If it is marked

executable, it will try to execute the �le. If the �le is not a valid binary program,

it will fail. Executable binary �les must conform to a certain protocol structure

which identi�es them to the operating system as being �t for execution. If a

text �le is marked executable, UNIX will try to pass the lines of the �le to the

command line interpreter or shell.

Certain �les in the UNIX operating system are not really �les at all but

`handles' to devices. They are called device nodes. A device node is a way `into'

a device through a �lesystem interface. It is convenient to be able to use normal

�ling commands to access devices. Not all devices can be accessed in this way,

but the interface is useful for those that can. In the Solaris 2 operating system,

the kernel process list is represented as such a directory of pseudo-�les.

For user convenience, the file command attempts to guess the contents of

UNIX �les, but this is not used by the system.
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5.4.3 Permissions and access

On multi-user systems we must have a mechanism to prevent one user from freely

modifying the �les of another user { while at the same time, keeping enough


exibility to enable groups of users to share certain �les. It is also advantaegous

to be able to lock �les so that they cannot be deleted { even by their owner. This

is normally done by giving �les permissions or protection bits.

Files must be readable and or writable only to very speci�c users. In some

operating system, like the Apollo Domain OS and the Andrew �le system, there

are very intricate schemes for protecting �les, consisting of lists of users who are

allowed or disallowed access to them. Here we shall brie
y sketch out the simple

system used by UNIX as an example.

Each �le has one owner and belongs to one group. The owner of the �le

is the only one (apart from the system administrator) who can decide whether

others can read or write to the �le and to which group it belongs. If the owner

wishes, he or she may open the �le for reading or writing to i) the other members

of the group to which the �le belongs, or ii) anyone. Since only the system

administrator can add users to a group, the �le is secure, provided the user sets

the correct protection bits.

When a new �le is created by a given user, that user is automatically the

owner of the �le. The group ownership is determined di�erently for BSD and

system 5 UNIX. In BSD, the group is normally set to a default group for that

user, called the login group. In system 5, the �le inherits the group ownership

from the directory it is created in. (This can also be arranged in BSD by setting

the `sticky bit'.)

More modern UNIX systems and other operating systems now provide access

control lists or ACLs. This generalizes the notion of �le owner and group by

allowing a �le to be accessible to a named list of users and a named list of groups,

rather than just a single user or a single group. ACLs were �rst introduced in

the DOMAIN operating system by Apollo and were later adopted by HPUX

and then Solaris. Novell systems (based on Apollo NCS) also provide ACLs.

Modern �lesystems like NFS 3, AFS and DFS also provide ACL support, but

there is currently no standard implementation and the di�erent systems are not

compatible.

5.4.4 File system protocols

To read or write to a �le, all operating systems require that users formally open

the �le. When �nished, they must close the �le. This formal procedure has
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several purposes. It allows us to

1. see whether the �le is inaccessible, because we do not have permission to

open it.

2. see whether the �le is inaccessible because it is being used by another user.

When we open a �le for writing, a lock is placed on the �le to prevent

others from writing to it simultaneously. This lock is removed by the close

operation.

3. obtain pointers to where the �le exists physically within the secondary

storage and set up a data structure called a �lehandle which the system

will use to describe the state of the �le as we use it.

4. set up any cached data which might be used by the OS.

Once a �le is open, the system must present the user with a consistent picture

of the �lesystem. When a user program reads lines from a �le, a pointer should

be advanced so that every line is read exactly once. An end of �le condition

should be signalled when the �le is read (this is usually achieved by storing an

EOF character at the end of the �le) etc. These are all aspects of an agreed

protocol de�ned by the �lesystem.

A more complex situation is the following. Suppose one user is reading a �le

and another user wants to write to it.

1. Should the user be allowed to write to the �le while someone is reading it?

2. If so, should the user be able to see the changes made to the �le until after

they have closed it?

There are two possibilities { either all users see changes immediately, or only

users opening �les after the changes were made see the changes. Both versions

of this are in use by di�erent �lesystem implementations. In the latter case, the

OS has to keep several copies of the �le until all �le handles are released and

everyone agrees about the contents of the �le.

It is di�cult to say that one or the other type of behaviour is more correct.

This is largely a subjective issue. What is important is that the �lesystem de�nes

its behaviour and sticks to it consistently. The behaviour of the �lesystem is often

called �lesystem semantics.
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Figure 5.12: Blocks and fragments

5.4.5 Filesystem implementation and storage

Although a sector is the smallest unit of allocation for the physical disk, most

�lesystems create logical structures on top of sectors in order to optimize disk

access. These are called blocks. A block can in principle be any size. Usually

they are from 512 bytes (the same size as a sector) up to 8k. The larger the block

size, the more e�cient �le transfers will be.

If we want to save a �le which is only three bytes long, we normally have to

allocate a whole block and the remainder of the block is wasted. Some systems,

notably BSD UNIX's ufs �lesystem, from release 4.2, solve this problem by using

two block sizes: major blocks and fragments. A �le is allocated in large blocks

except for the last one which is allocated as a fragment. Typical sizes for large

blocks are 4kB to 8kB, and a typical size for fragments is from 512 bytes to 1kB

(eighths).

We must now address the issue of how the blocks are allocated. This is the

analogous problem to that of memory allocation in RAM. The principal di�erence

is that disk memory is considerably larger than primary memory, so problems

can be encountered in addressing all of the blocks on the disk. We shall brie
y

mention some general strategies below { and then look more closely at the UNIX

105



ufs �lesystem.

To use the space on a disk, we must make a choice about whether we wish

�les to be stored contiguously, or whether we wish to use a scheme of logical and

physical addresses, as we did in primary memory and allow �les to be spread

liberally any on the disk. The problem with contiguous allocation is, of course,

fragmentation. We have a much better chance of being able to �t �les into the

spaces om a disk if we can allocate space in small blocks. On the other hand,

we know that large blocks are more e�cient, since we can read or write a �le in

fewer operations in the block size is large.

Contiguous allocation is seldom used (except in the swap area) for �lesystems

because of the fragmentation problem. Instead �les are divided up into blocks

and each �le consists of a list of blocks which may be scattered anywhere on the

disk. Our problem is then to identify �les amongst all of the blocks. There are

three ways of doing this:

1. Linked lists. Each block of data includes a pointer to the next block of

data in a linked list. The di�culty with this method is that each block

must be read in the correct order and the blocks might be spread randomly

over the disk. Thus the retrieval of a �le could require a lot of disk head

movement which is slow.

2. Linked table. A linked list of blocks for each �le is stored in a �le allocation

table. All of the pointers for every �le are collected together in one place.

This table could also be cached in RAM for faster access. This method is

used by MS-DOS and a number of other microcomputer operating systems.

3. Indexing. Each �le has an index containing a list of blocks which contain

the �le itself. This index might be stored anywhere in principle. Space for

it is normally allocated on the disk itself, inside reserved disk blocks, and

partly inside an index table which is built when the �lesystem is created.

The index blocks are grouped in one place for convenient access. This

system is used in UNIX. Since the index table must contain pointers to

disk blocks, a way of storing the pointers must be found. If the list is small

and is held in a �lesystem block, then most of the block will be wasted.

This is a drawback of the index method, but the main advantage of this

method is that it has few limitations.

5.4.6 The UNIX ufs �lesystem

A �le system under UNIX is created using the newfs command. A separate

�lesystem must be created on each separate partition of the disk. To de�ne
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a �lesysytem we have to de�ne the blocksize and numerous other parameters.

Each system has its own defaults which inexperienced users { and most often

experienced users are wise to use.

Two structures are created when a �le system is created: inodes and su-

perblocks. These are the most important objects in the �lesystem. Both of these

objects are information structures, in the sense of the C language and they are

de�ned under the /usr/include/ufs directory in �les fs.h and inode.h. It is

instructive to look at these �les. This is where the default blocksize etc will be

de�ned on your system!

The blocksize is variable, but a minimum block size of 4096 bytes i.e. 4kB

is stipulated so that the system can address 232 bytes of memory without using

three level indirection (see below). Also, the last block of a �le can be allocated

as a fragment of a block whose size is recorded in the inode. (It might be a half,

a quarter or an eighth of a block.)

A superblock contains the information on the boundaries of the partition

(cylinder groups) and information about where the inode table is and where dat-

ablocks start. If the superblock is lost or damaged, the whole �lesystem would

be unreadable. It is so important that, when a �le system is created, superblock

backups are made at regular intervals throughout a partition. Thus if one block is

detroyed, another can be used to repair the damage. The UNIX �lesystem check

program fsck can do this. fsck is run automatically on every boot of the system

in case the system went down uncleanly. (UNIX uses bu�ered and cached I/O

so data are not always written to the �lesystem immediately. The program sync

is run the the OS at regular intervals in order to synchronize the disk structure

with the present state of the cache. If the system crashes or goes down without

synchronizing the �lesystems, the superblock will be invalid and will have to be

repaired.)

Partition `a'on disk zero is special. This is the default boot device. On power

up, the boot program (in ROM) looks to the �rst few sectors of this partition for

a boot block. Sectors 0::15 contain the boot-block. Sector 16 marks the start of

the superblock.

An inode or index node is the data structure which holds the speci�c data

about a particular �le. Regardless of how large a �le is, there is exactly one inode

per �le. The elements of an inode are drawn in the �gure below.
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Figure 5.13: UNIX inodes.

When �le system is created, it creates a �xed number of inodes. It is not

possible to create more �les on the system than the number of inodes, so a limit

is built into each �le system. Usually the limit is no problem in practice { and

anyway, it can always be changed by changing the parameters given to newfs.

Inodes which are not in use, are kept in a doubly linked list called the free-list.

Filenames are stored in a directory structure, not in the inodes themselves, with

pointers to the appropriate inodes for the start of the �le. Each inode contains

a plethora of information about the �le: the device on which the �le resides,

the type of �le and its protection bits, the user id and group id of the owner,

timestamps indicating the last time the �le was written to etc, the size of the �le

and of course pointers to the actual blocks of data.

Data blocks are (of course) addressed by indexing. As an attempt at optimiz-

ing the index, inodes use three separate ways of addressing data on the disk (in

fact four di�erent ways are built in to the inodes, but only three are used). The

inode contains a list of twelve 32bit pointers to blocks on the disk. For small �les

this would be enough. Since the minimum blocksize is 4kB these pointers can

address up to 12� 4096 bytes i.e. 48kB.
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For larger �les, a system of indirect addressing is used. There are three levels

of indirect addressing, though only two are used currently. In single-indirect

addressing, the inode has a pointer which points to a �le block (not another

inode). This �le block has room for 4kB at least. Those 4kb are used to store

a sequential array of 32bit pointers to other data-blocks which contain the true

data. Using this method, we have space for 4096=4 four-byte pointers in the

address block { and each pointer can point to 4096 bytes (4kB), thus we have

space for 4096=4 � 4096 = 4194304 bytes per �le. This must then be added to

the 48kB of direct pointers.

In double-indirect addressing, the inode pointer points to a block of pointers

(as before), but now these pointers point to blocks which also contain pointers

{ i.e. the pointers to the real data. The total space accessible per �le is now

multiplied by 1024 { i.e. the number of 32 bit pointers which will �t into the

minimum block size, since every fourth byte of the single-indirect memory above

now forms a pointer to a block of 4kB. The total size is 4294967296 bytes, which

is roughly 4 giga-bytes. This should, again, be added to the single-indirect and

direct memory above.

Although the inodes can span an address space which is larger than 232 bytes,

internal pointers in the �le structures are still 32 bit (except in OSF/1) and so a

limitation to 232 bytes is imposed by the word size of the system hardware.

Exercises

1. Go back and think about shared libraries, in view of what you have learned

about logical, physical and virtual memory. What are the advantages and

disadvanteges of shared libraries?

2. Write programs to code the page replacement algorithms discussed in above.

Project

Write a program to model the behaviour of a hard disk. A disk drive contains

a stepper motor which pushes the head one track at a time. You can model the

tracks and segments of the disk as an array.

const int tracks = 20;

const int sectors_per_track = 20;

const int heads = 2;

const int bytes_per_sector = 64;
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char harddisk[tracks][sectors_per_track][heads][bytes_per_sector];

Write a device-driver program which moves the head of the disk according to

the LOOK scheme. You can choose yourself whether you base it upon SCAN or

CSCAN.

Why is this array not exactly like a disk? (Hint: think geometry.)

Suppose you have four short �les of data, two short and one long. Design a

simple �lesystem so that you can do the following:

1. Save the two short �les onto your `virtual disk' from the real disk.

2. Retrieve the �les again. Make sure that you can retrieve the �les by name,

as many times as you like.

3. Delete the �rst �le.

4. Save the longer �le now, using the space that was freed when you deleted

the shorter �le in [3].

5. Plot the head movement of your disk on the screen using track number

for the horizontal axis against time vertically, so that the output looks

something like the following.

Track ->

1 2 3 4 5 6 7 8 9 ...

*

*

*

*

*

*

*

*

*

*

*

*

Time is measured in units of one head movement { one click of the stepper

motor. Show how the head moves when you save and retrieve your �les.
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Hint: use separate output �les to print the result of the head movement

and the result of retrieving a �le.

Note that you will have to design a `protocol' for saving the data into the array.

The disk array is just an array of characters, you if you want to save a �le, you

need to know what is data corresponding to which �le.

Hint: you might want to limit the �lename size to, say, eight characters to

make the problem easier, like in DOS.

Explain carefully how you locate �les on your disk, and what scheme your

�lesystem uses to recover �les in the correct order.
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Chapter 6

Networks: Services and protocols

In this section we shall consider how to use the concepts we have considered so

far to make the task of implementing network communication as straightforward

as possible.

Consider a large company or a university with thousands of users, many of

whom have workstations or terminals on their desks { all of whom are connected

to a network. In this situation it is natural to share certain resources so that they

can be accessed from anywhere on the network, without having to be reproduced

on every machine:

� The printer,

� User authenti�cation data (password database),

� Disks holding user data,

� A reference clock which can be used to set the local clocks on all systems,

� Addresses and telephone numbers.

To some extent, this idea of sharing was the idea behind multi-user systems. Not

everyone can a�ord their own { so we share. What big multiuser mainframe

machines have tought us, however, is that a single monolithic computer with n

terminals is not a good solution.

� Users demand more and more CPU power every day.

� Scheduling the CPU, even if e�cient on paper, can be spoiled in practice

for most users by a few greedy users. Everyone wants their own private

CPU.
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� Interactive I/O places a big load, proportional to the number of users. A

large machine with a hundred keyboards attached to it can quickly become

overwhelmed by keyboard I/O. More and more programs are interactive

and the I/O overhead is much larger since mice and windows came along.

The solution which is popular at present is to give everyone a smaller machine

with their own CPU, keyboard and screen. Although perhaps wasteful in theoret-

ical terms, in practice it is one of those little luxuries, like owning a big car, which

improves the quality of life for those who have it. What's more, since computing

power has generally increased, software has grown to absorb that power { so it

is not wasted for long.

By giving everyone their own machine, linked together by a network we

� Spread the interactive I/O load over all the machines.

� Allow machines to have public and private resources.

� Introduce a new overhead: the network software.

6.1 Services: the client-server model

To share public resources on a network, we introduce the concept of a service. A

service is simply a job done by one part of a system on behalf of another. The

service is provided by a server on behalf of a client. This is what is known as the

client server model1.

1PC users often think that a server has to be a special kind of computer. This true on old

PC networks because they run an operating system which cannot run several processes. Only

a single task is required to run a server, but since PC networks before NT could not multitask,

a whole machine was required to do this job. On modern systems, any machine acn be a server

and a client simultaneously.
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Figure 6.1: The client server model. The client and the server need not be on

the same machine when there is a network present.

We have already encountered this kind of behaviour before in connection with

system calls. The system kernel is a kind of server, which provides I/O services

for all the processes on a system. Also daemons, in the UNIX terminology, are

servers which answer requests or perform some house-keeping on behalf of other

processes. The key idea is that there are always two elements: clients and servers.

On a network, we would like to arrange things so that the server and the

client might be anywhere { on the same machine or on di�erent machines. We

would like a 
exible system for sending out requests for services into a network

and getting an answer without having to know too much about where the services

are coming from.

To achieve these aims, we need:

� Interprocess communication which works across machine boundaries.

� Protocols { agreed systems of behaviour { for requesting services.

� Services need to have names or numbers which identify them uniquely.

� Network services need to be multi-threaded, since several clients might re-

quest services simultaneously. We don't want to keep clients waiting.

6.2 Communication and protocol

There are two ways of making a client-server pair. One is to use Berkeley sockets

directly and the other is to use RPC { or Remote procedure call software package.
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A `socket' is a communications link from one process to another. Sockets

work over a network using the internet protocol set (see next chapter). Opening

a `socket' to another machine is like opening a �le to read from or write to.

Data are transferred as streams or packets of raw, non-interpreted bytes. The

interpretation of the data once they arrive at their detsination is a problem for

the user to deal with.

RPC, on the other hand, is a high level software package which works on top

of sockets and allows programs to send typed data using a protocol known as

XDR { external data representation. It also has high level tools called protocol

compilers which help programmers to write the code to interpret data at both

ends of a client-server connection.

There are two main implementations of this software:

� Sun Microsystems' RPC

� Apollo's NCS system.

Most of the software was developed for the UNIX-like operating systems, but

has since been adapted to all the popular systems in use. All of the software

runs on top of the TCP/IP network protocol which we shall discuss in the next

chapter.

6.3 Services and Ports

Services are a high level concept. When we ask for a service, we are not interested

in how the message gets to the server over a network. We just want to be able

to call some function DoService(myservice) and have the result performed by

some invisible part of the system. To make this happen, a system of `handles' is

used. It is rather like opening a �le { but now we want to open a service. The

terminology is also di�erent.

To obtain a service, we do not request a �le handle but a port. A port is a

software concept { it should not be confused with the hardware connector which

couples your machine to the network (which is also called a port on some systems).

It is a number which an operating system uses to �gure out which service a client

wants.

We say that a particular service lives at port xxx.

Here is some important terminology.
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Well-known ports. Every computer, all over the world has to agree on the

port numbers for di�erent services. A well-known port is a port number

(< 256) which is reserved for a well-known service like ftp or telnet. It

has been registered in a world-wide register.

RPC program numbers. Historically, we distinguish between services and

RPC, although the e�ect of the two is the same. The system of calling RPC

services is di�erent to normal services { it uses program numbers �rst, and

works out port numbers for itself.

6.4 UNIX client-server implementation

It is useful to describe how UNIX deals with services, since this is the model

which has been adapted for other systems.

6.4.1 Socket based communication

To send data to a server using sockets, we need to know the port number at which

the server lives. Port numbers are listed in the �le /etc/services, which looks

like this.

#

# Network services, Internet style

# This file is never consulted when the NIS are running

#

tcpmux 1/tcp # rfc-1078

echo 7/tcp

echo 7/udp

...

ftp 21/tcp

telnet 23/tcp

smtp 25/tcp mail

time 37/tcp timserver

time 37/udp timserver

name 42/udp nameserver

whois 43/tcp nicname # usually to sri-nic

domain 53/udp

domain 53/tcp

hostnames 101/tcp hostname # usually to sri-nic

sunrpc 111/udp

sunrpc 111/tcp
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...

login 513/tcp

shell 514/tcp cmd # no passwords used

printer 515/tcp spooler # line printer spooler

courier 530/tcp rpc # experimental

uucp 540/tcp uucpd # uucp daemon

biff 512/udp comsat

who 513/udp whod

syslog 514/udp

talk 517/udp

route 520/udp router routed

ingreslock 1524/tcp

bootpc 68/udp # boot program client

bootp 67/udp bootps # boot program server

The �le maps named services into port numbers and protocol type. The protocol

type is also an agreed standard which is de�ned in the �le /etc/protocols,

which looks like this:

#

# Internet (IP) protocols

# This file is never consulted when the NIS are running

#

ip 0 IP # internet protocol, pseudo protocol number

icmp 1 ICMP # internet control message protocol

igmp 2 IGMP # internet group multicast protocol

ggp 3 GGP # gateway-gateway protocol

tcp 6 TCP # transmission control protocol

pup 12 PUP # PARC universal packet protocol

udp 17 UDP # user datagram protocol

hmp 20 HMP # host monitoring protocol

xns-idp 22 XNS-IDP # Xerox NS IDP

rdp 27 RDP # "reliable datagram" protocol

In order to open a socket, we must know the name of the host on which the server

lives. If we don't know this information in advance, we can send a broadcast

request to all hosts, hoping that one of them will reply with their correct address

(see next chapter).

Also, when the message arrives at a host which runs the server process, there

are two possibilities.
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� The server process is always running.

� The server process gets started when the request arrives.

Both methods are used in practice. If a server is expected to receive a lot of

requests, it should be running all the time. If it spends long periods sleeping it

should probably started when a request arrives.

The second of these possibilities is handled by a yet another server called the

internet daemon or inetd. This is a kind of public server which works on behalf

of any service. inetd reads a con�guration �le called /etc/inetd.conf. Here

are a few typical lines from this �le.

#

# Configuration file for inetd(8). See inetd.conf(5).

#

# Internet services syntax:

# <service_name> <socket_type> <proto> <flags> <user> <server_pathname> <args>

#

# Ftp and telnet are standard Internet services.

#

ftp stream tcp nowait root /usr/etc/in.ftpd in.ftpd

telnet stream tcp nowait root /usr/etc/in.telnetd in.telnetd

#

# Shell, login, exec, comsat and talk are BSD protocols.

#

shell stream tcp nowait root /usr/etc/in.rshd in.rshd

login stream tcp nowait root /usr/etc/in.rlogind in.rlogind

exec stream tcp nowait root /usr/etc/in.rexecd in.rexecd

comsat dgram udp wait root /usr/etc/in.comsat in.comsat

talk dgram udp wait root /usr/etc/in.talkd in.talkd

inetd listens on the network for service requests for all of the daemons which are

in its con�guration �le, and { if such a request arrives { it starts the server for

the duration of the request.

Notice the �eld `wait' and `nowait'. This tells inetd what to do if another

request arrives while one request is being processed { should it wait for the �rst

request to �nish (single threaded) or should it start several processes (multi-

threaded) to handle the requests2.

2Note: this is not true multi-threading since all of the processes are heavyweight processes.
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6.4.2 RPC services

In the RPC way of doing things, we called a service based on a program number, a

procedure number and a version number. There is now an extra step in the chain

of events { yet another common server which must be consulted. This is called

the portmapper. When an RPC server starts up on its host, it registers itself with

the portmapper, telling it which port it is listening to and what program number

it is using.

When an RPC client wants a service, it sends a request to the portmapper on

the server host asking for a server which can deal with program number (service)

xxx. The portmapper replies by giving the port on which the RPC server is

listening.

The advantage of this scheme is that RPC applications do not have to run

on well-known ports. A suitable free port can be found at start-up. On the other

hand, each type of server program must have a unique program number, which

must be obtained from Sun Microsystems. The program numbers are stored in

/etc/rpc.

The real bene�t of the RPC packages is the high level concepts which they

handle on behalf of the programmer. The protocol compilers and XDR proto-

cols provide a set of `frequently need subroutines' which enhance the system of

communication across a network.

6.5 The telnet command

The telnet command, as opposed to the telnet service, does not only contact the

well-known port number 23, but can also be used to send a message to any port.

For example, instead of the command

finger mark@mymachine

to get information on user mark from the �nger database, we could contact the

well-known port on host `mymachine' as follows:

anyon% telnet anyon finger

Trying 129.240.22.14 ...

Connected to anyon.

Escape character is '^]'.

mark

Login name: mark In real life: Mark Burgess

Directory: /mn/anyon/u2/mark Shell: /local/bin/tcsh
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Figure 6.2: The X windowing system.

On since Aug 14 11:59:39 on ttyp1 from :0.0

17 minutes Idle Time

Mail last read Sun Aug 14 14:27:02 1994

No Plan.

Or had �nger not been in /etc/services, we could have written

telnet hostname 79

Not all services accept textual input in this way, but telnet will try to contact

their ports nevertheless.

6.6 X11

The X11 window system, used by Unix, is a client-server based application. A

user's workstation runs a server process called X, whose job it is to display win-

dows on the user's display. Each application the user wishes to run is a client

which must contact the server in order to have its output displayed on the X-

display.

By making this simple client-server abstraction, it makes no di�erence whether

applications are running on the same host as the X-display, or whether they are

running over the network. X uses its own system of protocols which is layered

on top of socket communication. Strangely, X and Sun's variant News are the

only window systems which have understood the point of networking. All other

window systems require you to run programs on the computer at which you are

sitting.
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6.7 html: hypertext markup language

A further example of a protocol is the world wide web hypertext markup (for-

matting) language (html). This insists upon simple rules for formatting pages

and references.

Exercises

1. Explain what `protocol' means.

2. Describe brie
y the client-server model.

3. What role do d�mons play in with respect to the unix kernel? Why are

servers daemons?

Project

Make a simple client-server model which commuicates via unix �les. The server

should be sent an arithmetic problem to solve, for example: 3 + 7 =. The client

should send this request to the server, and the server should send back the answer.

The client must be able to exit gracefully if the server does not answer for any

reason. (Hint: you could use the `sleep' command to wait for the server to reply.)

You will need to think of the following:

1. What �lenames should you use to send messages from the client to the

server and from the server to the client?

2. Since the client and the server are independent processes, you need to �nd

a way of discovering when the client and the server have �nished writing

their replies, so that you don't read only half of the answer by mistake.

3. The server should loop around and around, waiting for maultiple requests,

while the client sends only one request and exits when it gets a reply.
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Chapter 7

TCP/IP Networks

In the last chapter we looked at some of the high level considerations for enabling

transparent communication over a network. The next thing to look at is how

such a scheme of protocols is achieved in practice.

7.1 The protocol hierarchy

7.1.1 The OSI model

We begin by returning to the `most important idea in computing' { namely hier-

archies. As we have noted before, the most practical way of solving complicated

problems is to create `layers of detail'. At any level in a hierarchy, the details

of the lower levels are invisible { so we never see the irrelevant pieces of the

computing puzzle we are trying to solve.

The International Standards Organization (ISO) has de�ned a standard model

for describing communications across a network, called the OSI model, for Open

Systems Interconnect (reference model).

The OSI model is a seven layered monster. It does not have to be taken

literally { it might not be natural to separate all of these parts in every single

program { but it is useful as a way of discussing the logically distinct parts of

network communication. The layers are described as follows.
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7 Application layer Program which sends data

6 Presentation layer XDR or user routines

5 Session layer RPC / sockets

4 Transport layer tcp or udp

3 Network layer IP internet protocol

2 Data link layer ethernet (protocols)

1 Physical layer ethernet (electronics)

At the lowest level, the sending of data between two machine takes place by

manipulating voltages along wires. This means we need a device driver for the

signaller, and something to receive the data at the other end { a way of converting

the signals into bytes; then we need a way of structuring the data so that they

make sense. Each of these elements is achieved by a di�erent level of abstraction.

1. Physical layer. This is the problem of sending a signal along a wire, ampli-

fying it if it gets weak, removing noise etc. If the type of cable changes (we

might want to re
ect signals o� a satellite or use �bre optics) we need to

convert one kind of signal into another. Each type of transmission might

have its own accepted ways of sending data (i.e. protocols).

2. Data link layer. This is a layer of checking which makes sure that what as

sent from one end of a cable to the other actually arrived. This is sometimes

called handshaking.

3. Network layer. This is the layer of software which remembers which ma-

chines are talking to other machines. It establishes connections and handles

the delivery of data by manipulating the physical layer. The network layer

needs to know something about addresses { i.e. where the data are going,

since data might 
ow along many cables and connections to arrive where

they are going.

4. Transport layer. We shall concentrate on this layer for much of what follows.

The transport layer builds `packets' or `datagrams' so that the network layer

knows what is data and how to get the data to their destination. Because

many machines could be talking on the same network all at the same time,

data are broken up into short `bursts'. Only one machine can talk over a

cable at a time so we must have sharing. It is easy to share if the signals

are sent in short bursts. This is analogous to the sharing of CPU time by

use of time-slices.
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5. Session layer This is the part of a host's operating system which helps a

user program to set up a connection. This is typically done with sockets or

the RPC.

6. Presentation layer. How are the data to be sent by the sender and inter-

preted by the receiver, so that there is no doubt about their contents? This

is the role played by the external data representation (XDR) in the RPC

system.

7. Application layer. The program which wants to send data.

As always, the advantage of using a layered structure is that we can change

the details of the lower layers without having to change the higher layers. Layers

1 to 4 are those which involve the transport of data across a network. We could

change all of these without doing serious damage to the upper layers { thus as

new technology arrives, we can improve network communication without having

to rewrite software.

Most of these layers are quite static { only the physical layer is changing

appreciably.

7.1.2 Data encapsulation

Each time we introduce a new layer of protocol into network transport, we need

to `package in' the information in some agreed format. This is called data en-

capsulation. Often when data are encapsulated, each `packet' (to use the word

loosely) is given a few bytes of `header information'. This is information which

includes, for example, what the information is for, where it is going and which

piece of the total information the current packet represents.

At the level of the network layer, data might be divide up into numbered

packets, each of which contain the address of the sender and receiver, the length

of the packet and so on.

Suppose now that we were to `unpack' these data, removing their headers and

reassembling the data. We might �nd that the data are structured at a higher

level, namely the transport layer. The form of the data might be a sequence of

messages, each of which has a header of its own containing a port number or RPC

program number of the receiver application program, the length of the message

and so on.

Notice the parallels between this and the system of segments and pages in

the virtual memory concept of chapter 5. Each layer of abstraction we introduce

requires a small overhead (the header) which gets added to the data so that the
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receiver can make sense of them. This is the essence of implementing a protocol

in practice.

7.2 The internet protocol family

The set of protocols currently used on most networks is called the internet protocol

family. This is divided into four layers which correspond roughly to a coarse OSI

model.

4 Application layer user program 6,7

3 Host to host transport higher level data encapsulation 3,4,5

2 Internet layer lower level datagram transport 2

1 Physical layer Network 1

At the internet layer, we have the IP or internet protocol which includes a

speci�cation of addresses and basic units of data transmission. The o�cial name

for the lowest level data `packages' in the internet protocol is datagrams. Each

datagram consists of a number of 32 bit words. The �rst six of these words

consists of the IP header.
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Version IHL Service Total length

Identi�er Flags Fragmentation o�set

Lifetime Protocol Header checksum

Sender's address

Destination address

Options Padding

DATA ....

Figure 7.1: IP datagram format

The size of datagrams may be altered by the transport agents during the

process of being sent. If a router transmits datagrams from one physical net-

work to another, and the second network uses a smaller packet size, it will divide

datagrams up into smaller datagrams called fragments. The above header is then

reproduced in each fragment together with a `fragment o�set' which determines
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the order in which the fragments should be reconstructed at their �nal desti-

nation. The packet size on di�erent physical networks is part of the low-level

protocol de�nition. This is chosen when the physical layer is designed, based on

the e�ciency and speed of the network. On a slow network, a small packet size

would be used so that the multiuser sharing of network time is more equitable,

i.e. a greater number of packets per unit time can be sent if the packets are

smaller. On the other hand, if the packet size is too small, the overhead becomes

a signi�cant portion of the total packet size and the transfer is ine�cient.

At the next level (the transport layer), there are two standard protocol types

provided. These are called tcp for transmission control protocol and udp for user

datagram protocol. They are sometimes called connection-oriented and connec-

tionless protocols respectively, or reliable and unreliable. We shall explain these

names below.

7.2.1 udp

The user datagram protocol is called unreliable because when an application

chooses this protocol, the best it can do is to `throw its data out to the wind'

and hope that it will arrive. When we use udp transport, there is no guarantee

that data will arrive at the destination and no con�rmation of receipt is sent by

the receiver.

It is called connectionless because the messages are sent one by one, with-

out any concept of there being an on-going connection between the sender and

receiver. This is like sending a letter in the post.

Udp is the simpler of the two transport layer protocols, since it requires no

handshaking by the system. It is useful for applications which either need or want

to provide their own form of handshaking. For example, it would be natural to

use the udp protocol for a `question-answer' type of client-server system. The

client knows that its question arrived if it gets an answer from the server, so

asking the network protocols to guarantee it would be a waste of time.

A single `message' of udp encapsulated datagrams is o�cially called a packet

and is given a small header as shown in the �gure below.
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Source port Destination port

Packet length Checksum

DATA ...

Figure 7.2: udp packet header
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Destination portSender's port

Sequence number

Acknowledgement number

Reserved Flags Window

Checksum Urgent pointer

Options Padding

DATA ...

O�set

Figure 7.3: TCP segment header

Notice that this header contains no ordering information { so the order in

which the packets arrive at their destination is not guaranteed by the protocol

itself. Only the integrity of the data are checked, using a checksum.

7.2.2 tcp

A single message of the transmission control protocol is called a segment. The tcp

protocol is called reliable or connection-oriented because su�cient handshaking

is provided to guarantee the arrival and the ordering of the segments at their

destination. The ordering of each message implies a concept of two machines

being continual contact with one another. This is like a telephone conversation:

both parties are in contact all the time.

TCP connections are useful for sending data to servers, where no particular

reply is required. For example, it would be used to send print jobs to a printer

queue across a network. The sender receives no reply from the print spooler, and

wants every single line of data to arrive in the correct order without having to

worry.

Each tcp segment has a header as shown in the �gure below.

7.3 The physical layer

As an example of a physical layer, we can take a brief look at the ethernet.

Ethernet is one form of cabling which is in common use. Other kinds of cable

include �bre optics (FDDI) , 10BaseT or ISDN.
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7.3.1 Network connectivity

To send messages from one computer to another, we have to connect computers

together. One way of doing this would be connect every machine to every other

machine in some bizarre `cat's cradle' of wiring. This would require n network

connections per machine if there were n machines. It's pretty clear that this is

not a good solution.

Another solution is to chain machines together (see �gure below) or put them

in a ring. This requires only two connections per machine.
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Figure 7.4: Chains and rings.

The disadvantage with this scheme is that each machine has to send signals

forward to the next one, until they arrive at the correct machine, which costs

time and resources. FDDI �bre optic transmission works like this. It is called a

token ring.

Modern ethernet uses neither method. Instead it uses a combination of two

solutions. A basic ethernet network consists of a single cable or bus. Every

machine listens into the same cable with one interface connector (see �gure).
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128



Figure 7.5: Ethernet

Since all machines share the same cable, only one machine can be talking at

once. Each machine waits its turn to transmit data. Each host 
ashes its signals

to all the hosts on the cable like sending Morse code with a torch. Every host sees

every message but only the host with the destination address bothers to accept

the message.

Ethernet comes in three 
avours: thick ethernet, a fat yellow cable with black

markings, thin ethernet a coaxial (usually black) cable a few millimetres thick

and twisted pair ethernet. The latter comes out of an ISDN telephone connector,

whereas the older types use coaxial and D-pin connectors. Twisted pair ethernet

is usually structured in star formation. That is, at strategic places on a master

cable (usually thick ethernet) a `hub' is attached. This is a device which converts

one connection into many. From the hub there is one twisted pair wire to each

machine. If there are many machines, we require many hubs, since the number

of connections is limited to ten or so.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..

..

..
.
..
..
..
..
..
..
..
..
..
...
...
...
....
.......

...........................................
....
..
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
..
..
..
....
................................................

....
....
..
...
..
..
..
..
..
..
..
.
..
..
.
..
..
.
.
..
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
....
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
...................................................

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

...
.....
......
......
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
......
......
.....
......
......
.....
......
..
..
.
..
..
.
..
..
..
.
..
..
.
..
..
..
..
...
...
..
...
...
...
..
...
...
..
...
...
....
..
...
..
...
..
...
..
...
..
...
..
...
...
..
...
..
...
..
....
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
...
.
..
.
..
..
.
..
.
..
.
..
..

HUB

Thick ethernet ?

Figure 7.6: Star base networks

A similar arrangement can be achieved with thin ethernet using a multiport

repeater, rather than a hub. A repeater is simply an ampli�er, which is used

over long stretches of cable. A multiport repeater combines ampli�cation with

dividing up a thin ethernet cable into n branches.
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The twisted pair solution is the most modern of these solutions.

7.3.2 Ethernet addresses

An ethernet address is a number which is wired into every ethernet interface card.

It is unique for every machine in the world. The �rst few hexadecimal digits of

the ethernet address identify the manufacturer of the interface.

The ethernet address is the only piece of information a machine has before it

is con�gured. It is only used by diskless machines and some x-terminals as part

of an ARP/RARP ((Reverse) Address resolution protocol) request to get an IP

address.

7.4 Internet Addresses and Routing

7.4.1 IP addresses, networks and domain names

The internet is, by now, a world-wide network. As of today, it is version 4 (IPV4)

of the internet protocol which is in common use. Every host on the internet has

to have a unique address so that network communication is unambiguous. This

is given by a 4-byte word of the form

xxx.yyy.zzz.mmm

where xxx etc can be numbers from 0 to 255 (Certain addresses are reserved).

In addition to a numerical address, each host has a name. For example, the

following are valid internet addresses and the names they correspond to.

129.240.22.14 anyon.uio.no

128.39.89.10 nexus.iu.hioslo.no

192.48.96.9 ftp.uu.net

The addressing scheme is based on a hierarchical splitting of networks, subnets

and hosts. To arrive correctly at its destination an IP packet has to know exactly

which network a host is connected to. This information is correctly coded into

the numerical address, but is not contained directly in the textual name form.

In the textual form, each machine belongs to a logical domain which has a

name. The address takes the form

machine.domain-name
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Thus in the above examples, `anyon', `nexus' and `ftp' are host names and `uio.no',

`iu.hioslo.no' and `uu.net' are domain names.

The numerical form is strictly speaking a combination of a network address

and a host address. The textual form is a combination of a hostname and a

domain name.

There is a subtle di�erence between these. Given a numerical IP address,

datagrams can �nd their way precisely to the correct network and machine.

The textual information is not su�cient however because, while the hostname

is unique, the remainder of the address (the domain name) is usually a generic

name for a group of networks { and we don't know how to choose the right one.

A logical domain, like the above examples, can encompass any number of

di�erent networks. For example, the domain name `uio.no' encompasses all of

the subnets under the address 129.240.*.*. The IP packets need to know which

subnet the machine is on in order to get to their destination, because the text

name only says that they should to to 120.240.*.host. The * is unknown.

To complete this information, we need a database which maps internet domain

names to internet addresses. This mapping is performed by the Domain Name

Service (DNS) or Berkeley Internet Name Domain (BIND) which we shall discuss

below.

7.4.2 Netmask and broadcast address

Each address consists of two parts: a network address and a host address. A sys-

tem variable called the netmask decides how IP addresses are interpreted locally.

The netmask decides the boundary between how many bits of the IP address

will be kept for hosts and how many will be kept for the network location name.

There is thus a trade o� between the number of allowed domains and the number

of hosts which can be coupled to each subnet. Subnets are usually separated

by routers, so the question is how many machines do we want on one side of a

router?

The netmask only has a meaning as a binary number. When you look at the

netmask, you have to ask yourself { which bits are ones and which are zeroes?

The bits which are ones decide which bits can be used to specify the domain

and the subnets within the domain. The bits which are zeroes decide which are

hostnames on each subnet. The local network administrator decides how the

netmask is to be used.
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Figure 7.7: The netmask sets the division between network address and host ad-

dress in the 4-byte IP address.

The most common situation is that the �rst three numbers xxx.yyy.zzz

represent the domain and the last number mmm represents the machine. In this

case the netmask is 255.255.255.0, leaving the last byte for machine addresses.

It is only possible to have 254 di�erent machines in the domain with address

xxx.yyy.zzz with this netmask. If we wanted more, we would have to introduce

a di�erent domain name for the extra hosts!

If we wanted more machines on each subnet, we would have to change the

netmask and the de�nitions of the domain address. By making the netmask

255.255.248.0, as in the �gure above, we add an extra bit to the host part.

Thus a total of

211 � 2

hosts could use the same domain name.

One address is always reserved by the internet protocol, namely the broad-

cast address. This is an address which is used like a wildcard { to refer to all

machines in a given domain simultaneously. Another address is reserved as an ad-

dress for the network itself. Usually xxx.yyy.zzz.0 is the network address, and

xxx.yyy.zzz.255 is the broadcast address, but on older networks the address

xxx.yyy.zzz.0 was used for both of these.

7.4.3 Routers and gateways

A router is a device which connects two physically di�erent segments of network.

A router can be an ordinary workstation, or it can be a dedicated piece of ma-

chinery. If a router joins n di�erent networks, it has n di�erent network interfaces

and forwards datagrams between them. The router must be able to understand

internet addresses in order to do this { since it must know where packets want

to go.

A gateway is another name for a router. Some authors distinguish between

gateways which forward packets with di�erent network protocols, and routers

which just isolate di�erent segments of network of the same type.
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Roughly speaking, the network on the short end of a router is called a local

area network (LAN) and the greater network on the long end is a wide area

network (WAN), though these names are normally used as it suits.

7.5 Network Naming services

7.5.1 The Domain Name Service

Although the system of textual internet addresses is very convenient from a user

point of view, it creates a problem. Users, on the one hand, would like to use

names rather than numbers to talk about network hosts, but the name form is

not su�cient in itself as an exact speci�cation of a network and host addresses.

The solution to this problem is the domain name service or DNS. This is a

service which takes a textual internet address of the form

host.domain

and returns the numerical form of the IP address for that host. This is called

resolving the name. Notice that no two machines in the same domain may have

the same name, otherwise the DNS would not be able to resolve the IP address

from the textual form.

The DNS also performs the reverse service, converting numbers into names

and stores extra information about which hosts are mail-exchangers etc. The

UNIX program nslookup can be used to browse in the Domain Name Service.

The domain name service is a daemon, called a nameserver, which runs on

some chosen host (usually a UNIX machine, since the software was written for

UNIX) and looks up names in a database. The host on which the nameserver

runs is often called a nameserver too.

Each server covers only the list of hosts in its local domain, not those of other

domains { but it has a knowledge of other nameservers which can answer queries

in other domains. If a nameserver receives a request to resolve a name which is

not in its own domain, it forwards the request to the o�cial nameserver for that

domain.

Nameservers update each other's information constantly about what o�cial

nameservers addresses are so that the data are always up to date. Each new

network which is set up on the internet has to register its nameserver centrally

so that this information is complete.

Every host on a network must know the name of its local nameserver in order

to send requests for name resolution.
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The DNS software which is in most widespread use is the Berkeley BIND

software (Berkeley Internet Name Domains). Microsoft have their own imple-

mentation called WINS (Windows internet nameservice) as their own commercial

solution but this will soon be abandoned in favour of DNS, since it lacks adequate

functionality and security.

7.5.2 Network Information Service

The DNS is not the only database service which is in use on the internet. The

Network Information Service (NIS), written by Sun Microsystems is another ser-

vice which provides information on the network. NIS was formerly called the

Yellow Pages, until Sun Microsystems were politely informed that Yellow Pages

was a trademark of British Telecom. Many people still refer to NIS as YP.

NIS was designed for the UNIX operating system. It is nevertheless used by

DOS and Macintosh machines which run software to communicate with UNIX

servers on TCP/IP networks. The data it stores are commonly required con�g-

uration �les for UNIX.

For example, the user registration database is contained in NIS, as is the list

of all hosts on the local network. The hosts information actually reproduces the

information which is stored in the DNS, but the information is not complete

{ since only host names are mapped to IP addresses { no domain names are

included. A number of other databases are held in NIS, such as network-wide

mail aliases and information about groups of users.

The advantage of NIS is that each user on a network can have the same login

name and password on all of the machines which use the network information

service { because they all read the same database. This NIS is simply a way of

sharing the information which would otherwise have to be typed in separately to

each machine.

Wheras each host must know the name of its nameserver, no host has to

know the name of the local NIS server { that is because NIS uses the broadcast

system. The software which connects clients to the server sends out a request to

the broadcast address. The message is received by every host on the network that

is listening. When a NIS server receives the messages, it replies to the sender with

its IP address, so that the sender knows which host to query for NIS information.

It will continue to use that address for a while (even though the server may crash

in the mean time) and then it broadcasts its query again.

If no servers are available, a client may never get its information! Most net-

works have backup servers in case on should fail. That way if one doesn't answer,

hopefully the other one will.
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The advantage of the system is that a client always ends up asking the server

which can answer quickest { and which, presumeably, has the least to do, so the

load of answering the service is spread around.

7.6 Distributed Filesystems

Probably the �rst thing we are interested in doing with a network is making our

�les available to all hosts, so that { no matter where in our corporate empire we

happen to be sitting { we always have access to our �les.

The concept of a distributed �lesystem is about sharing disks across a network.

Many operating systems have

There are three main contenders for such a system in the UNIX world. Only

one of these is in widespread use.

7.6.1 NFS - the network �lesystem

NFS was historically the �rst distributed �lesystem to be implemented, by Sun

Microsystems. All manufacturers now support Sun's NFS.

NFS is based on Sun's own RPC system (Remote procedure call). The idea

behind NFS is to imitate UNIX �lesystem semantics as closely as possible from

across a network. NFS works by implementing a number of servers which run on

UNIX machines.

One problem with a network �le system is what to do about machine crashes.

Suppose we are in the middle of writing or retrieving a �le and the server machine

supplying the �le crashes. We need some way of remembering where we were,

so that when the machine comes back up, the operation can continue where it

left o�. In fact this is almost impossible to achieve in practice { NFS's solution

works in many cases, but not in all.

In the UNIX �lesystem, a user must obtain a lock on a �le in order to read

or write to it. In NFS, the same system applies. A lock is obtained from a

lock server on the host where the real disk �lesystem lies and the state of the

�lesystem is communicated by a state server. NFS is sometimes called a stateless

protocol, but this is a misleading title. The state of the �lesystem on the server

is maintained on the server which owns the �lesystem. If there is a crash, the

server tries to reestablish the locks it held before the crash. If this is not possible

because the �lesystem has changed in the meantime or because of unfortunate

timing, the result is a `stale NFS �lehandle' { an unrecoverable error. The state

information has to be cleared and restarted.
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NFS is called stateless because the server does not record the requests which

the client makes (except for locks). The server processes requests without caring

about which client it is serving, or about what it has done in previous requests.

It doesn't know how much of a �le the client has read. In other words, it is the

client's responsibility to keep track of what requests it sends to the server and

whether or not it gets a reply.

NFS version 3 is now in use by some vendors and includes a number of im-

provements (and a few new bugs) over NFS. These include better caching, access

control lists (ACLs) etc.

7.6.2 AFS - the andrew �lesystem

Another �lesystem which is increasingly discussed, is the Andrew �le system.

The CERN high energy physics (HEP) group use the AFS as a global �lesystem

and many other institutions are starting to follow suit. Whereas NFS tries to

reproduce UNIX-like �le semantics across a network, AFS is a di�erent �lesystem

altogether. AFS solves the problem of user authenti�cation between di�erent

sites. A problem in sharing �les between di�erent sites around the world is that

usernames and passwords are local to each site. It is possible (though perhaps

unlikely) that very di�erent users around the world might have the same user ID

and login name, and even the same password. Thus AFS has to take into account

the username problem. AFS also has more advanced caching features to speed up

�le access and access control lists (ACLs). It is in many ways superior to NFS,

but whereas NFS is free software, AFS is a commercial product maintained by

Transarc and is therefore not in widespread use.

An improved version of AFS, called DFS has been incorporated into Digital's

Distributed computing environment.

7.6.3 DCE - the distributed computing environment

The Digital Equipment Corporation's Distributed Computing Environment is,

in fact, as complete substitute for Sun's NFS system from RPC up. Instead of

using Sun's RPC software, DCE uses software originally developed for the Apollo

Domain operating system, called NCS. DCE works on top of Domain sockets.

The open software foundation (OSF) has adopted DCE as its o�cial network

solution, though its on operating system NSF1 still supports NFS. One of the

features of the DCE system is the concept of multiple backups of �les. If one

server fails, DCE allows another server to take over. This requires several servers

to have disk-copies of the same �les. This system is e�cient on a read mostly

136



�lesystem. When a write is made to such a �lesystem it must be made syn-

chronously to n disks. Maintaining these copies requires complex algorithms and

a time-consuming copying overhead. DFS/DCE is also now licensed by Transarc.
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Chapter 8

Security: design considerations

System security can mean several things. To have system security we need to

protect the system from corruption and we need to protect the data on the system.

There are many reasons why these need not be secure.

� Malicious users may try to hack into the system to destroy it.

� Power failure might bring the system down.

� A badly designed system may allow a user to accidentally destroy important

data.

� A system may not be able to function any longer because one user �lls up

the entire disk with garbage.

Although discussions of security usually concentrate on the �rst of these possibil-

ities, the latter two can be equally damaging to the system in practice. One can

protect against power failure by using un-interruptable power supplies (UPS).

These are units which detect quickly when the power falls below a certain thresh-

hold and switch to a battery. Although the battery does not last forever { the

UPS gives a system administrator a chance to halt the system by the proper

route.

The problem of malicious users has been hightened in recent years by the

growth of international networks. Anyone connected to a network can try to log

on to almost any machine. If a machine is very insecure, they may succeed. In

other words { we are not only looking at out local environment anymore, we must

consider potential threats to system security to come from any source.

The �nal point can be controlled by enforcing quotas on how much disk each

user is allowed to use.
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8.1 Who is responsible?

System security lies with

� The user.

� The system administrator.

� The system designer.

Many would prefer to write this list upside down { but we must be practical.

Usually we are not in a position to ring to the system designer and say `Hey, that

system modeule you wrote is not secure, �x it!'. The response would at any rate

take some time. Rather, we have to learn to take the system as it comes (pending

improvements in later releases) and make the best of it. All users of the system

should be aware of security issues.

Ideally, if all users were friendly and thoughtful, everyone would think about

the welfare of the system and try to behave in a system-friendly way. Unfor-

tunately some users are not friendly, and accidents can happen even to friendly

users.

8.2 Passwords and encryption

The �rst barrier to malicious users is the password. Every user on a multiuser

system must have a password in order to log on. Passwords are stored in a coded

or encrypted form so that other users cannot read them directly. Nevertheless,

on very many systems, the coded passwords are readable to all users. Moreover,

the algorithm which encrypts passwords is usable by all users. This means that

anyone can try to crack the passwords by guessing.

8.2.1 UNIX passwords

In most UNIX systems, passwords and login information are stored in the �le

/etc/passwd. This �les looks something like this:

root:99UaPHtxon3uk:0:1:Operator:/:/bin/csh

sundiag:*:0:1:System Diagnostic:/usr/diag/sundiag:/usr/diag/sundiag/sundiag

sysdiag:*:0:1:Old System Diagnostic:/usr/diag/sysdiag:/usr/diag/sysdiag/sysdiag

daemon:*:1:1::/:

sys:*:2:2::/:/bin/csh

bin:*:3:3::/bin:
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uucp:*:4:8::/var/spool/uucppublic:

news:*:6:6::/var/spool/news:/bin/csh

audit:*:9:9::/etc/security/audit:/bin/csh

nobody:*:65534:65534:::

+@NISgroup::0:0:::

The �elds of the �le are:

login name : password : user id: group id : full name : directory : shell

i.e. the encrypted password is readable as the second �eld. The UNIX standard

library command crypt() converts a text string into this coded form.

When a user types in his or her password, the system does not try to decrypt

the password, but rather encrypts the password and compares the coded forms.

The reason for this is that there is no (publicly) known algorithm for decoding

passwords encrypted using crypt(). Just to reverse the process would take

hundreds of thousands of years of CPU time. crypt was designed to this way.

To encrypt a password, crypt takes the password string and a random num-

ber, known as a salt.

code_passwd = crypt (passwd_string,salt);

The salt ends up being the �rst two characters of the encrypted form of the

password. (If we didn't know the salt, it would be impossible to compute the

same encrypted form more than once!)

To try to guess passwords automatically, all we have to do is to send a whole

list of guesses as passwd_string, take the �rst two characters of the encrypted

password as the salt, and compare the result of the crypt function with the

encrypted form from the password �le.

Elaborate programs have been written to try to crack passwords in this way.

Such programs are useful tools for the system administrator who should keep an

eye on which users have poor passwords. It is better that the system administra-

tor �nds a bad password before a malicious user does.

On newer UNIX systems, passwords are stored in a shadow password �le which

is not /etc/passwd but a di�erent non-readable �le. Since normal users cannot

read this �le, they can only try to log onto other users' accounts by trial and

error. They cannot compare an encrypted list of their own to the password �le.
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8.2.2 Bad passwords

Surveys of user passwords show that very many users choose extremely simple

passwords. Passwords should be a combination of large and small letters, numbers

and special symbols like !@#$%^&* etc. Passwords should not be

1. Your name or anyone else's name (your dog's name!)

2. Names from books, place names or the name of your computer.

3. Names of famous people like Einstein, Marx.

4. Your phone number.

5. Your birthday.

6. Your car registration plate

7. Any personal information which is easily obtained.

8. Your login name!!

9. Any word in an English or foreign dictionary.

10. A keyboard sequence like qwerty.

11. Any of the above spelled backwards.

Some enhanced systems take the view that users should not be able to choose an

insecure password, and prevents them from doing so. Most commercial operating

systems don't care whether users have no passwords at all.

8.3 Super-user, or system administrator

The super-user is a trusted user. The super-user has unlimited access to �les on

a system. He/she is the only user who can halt the system and is the only user

who can make backups of system data.

Clearly such a user is required:

� To maintain the system and deal with special circumstances which arise.

� To create and destroy new and old users.

� To make backups of the system.
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� To install software and system upgrades.

Often system administrators end up doing a lot more than this. What is impor-

tant to understand is that the superuser has a highly responsible position which

must not be compromised. The administrator's account must not be used autho-

rized users. The password is of crucial importance. The designer of an operating

system must be acutely aware of the need to preserve the security of privileged

access.

Under the UNIX system, the superuser is called root.

8.3.1 Network administration

Networks make it possible to link computer systems in an unprecedented way.

We can `mount' (see chapter 5) �lesystems from one computer onto another

computer across a network and log in to systems all around the world (if we have

an account!). We must ask: what is the role of the superuser in a networked

environment?

Consider the following. Suppose the administrator of one machine in Oslo gets

permission from a system in California to access a �lesystem on the Californian

machine. When the Oslo administrator mounts the �lesystem on his machine

(without needing to give a password), he sees the �les as though they were a part

of his system. Now, since root has the rights to all �les, it might seem natural

that he would be able to read and modify the �les of all users in California. But

surely, this is wrong { the superuser of a machine in Oslo cannot be regarded as

a trusted user for a system in California!

UNIX gets around this problem by mapping the user root (which has user id

0 and all rights) to the user nobody (which has user id �1 and no rights) across

a network. This means that the superuser has rights only on the local machine.

To get rights on another machine, across a network, either special permission

must be given by the remote machine { or the user must be able to log onto the

machine by knowing the root password.

As another example of network security { or lack of it { let us consider also

the X-windows system. X is a windowing system which is designed to work

transparently over a network. X works by connecting to a server, anywhere

on the network. Normally the X-server only allows the machine on which it is

running to access the display, but in a network situation it is not unusual to �nd

users logged in on several di�erent machines. Such a user wants all the windows

to appear on his or her workstation, so the X server allows certain other named

hosts to open windows on its display.
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Before the introduction of the xauthority mechanism, all security was based on

the xhost program. This was host based meaning that anyone using a named host

could open windows on the server. Many users do not understand the X system

(which is quite complex) and simply disable access control by calling xhost +.

This allows any host in the world to connect to the user's server. In practice, this

means that anyone in the world can view the picture on such a user's screen.

Many programs have not adopted the xauthority system which is user based,

and so the xhost problem is still widespread,

8.3.2 Setuid programs in unix

The superuser root is the only privileged user in UNIX. All other users have only

restricted access to the system. Usually this is desirable, but sometimes it is a

nuisance.

A set-uid program is a program which has its setuid-bit set. When such a

program is executed by a user, it is run as though that user were the owner of the

program. All of the commands in the program are executed by the owner and

not by the user-id of the person who ran the program. If the owner of the setuid

program id root then the commands in the program are run with root privileges!

Setuid programs are clearly a touchy security issue. When giving away one's

rights to another user (especially those of root) one is tempting hackers. Setuid

programs must be secure.

A setgid program is almost the same, but only the group id is set to that of

the owner of the �le. Often the e�ect is the same.

An example of a setuid program is the ps program. ps lists all of the processes

running in the kernel. In order to do this it needs permission to access the private

data structures in the kernel. By making ps setgid root, it allows ordinary users

to be able to read as much as the writers of ps thought �t, but no more.

Naturally, only the superuser can make a �le setuid or setgid root.

Next, we have the problem of what to do with setuid programs which are read

across the network. If we mount a �lesystem across a network, we have no control

over what goes into the �le. Suppose then a stupid system administrator, angry

at the world and dying for revenge, made a setuid root program which executed

every command every user gave to it { then suddenly everybody who accessed

this �le over the network would have root access on their local machine!

Clearly careless setuid programs can be a security risk, so network-based

�lesystems give the option of disallowing setuid programs.
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8.4 Backups

Accidents happen even to the most careful users. Users delete �les without

meaning to, power failure leads to disk corruption, software bugs can delete �les,

system administrators can make mistakes { and of course someone might actually

steal your computer!

User data are the most important part of a computer system { anything else

can be replaced. New disks can be bought, software can be loaded in afresh {

but once user data are gone, they are gone. It is therefore important to backup

user data regularly. From a network vantage point, it is useful to be able to take

backups centrally. In BSD UNIX, this can be done using the rdump command.

Backing up data is expensive { both in terms of man-hours and in the cost of

storage media. Some systems use secondary disks to keep backups of important

data. The cheaper alternative is to use tape. Tape comes in many forms. the

most common in use today are

� Standard 1

4
-inch tape cartidges.

� EXABYTE 8mm (video tape!)

� DAT (Digital audio tape)

Larger systems may also use half-inch tape. Tape machines are becoming more

intelligent and often include compression software in their device drivers which

packs more information into the same space on the tape.

An EXABYTE video tape with normal compression can hold up to 5GB of

data. Newer drives support 10GB, but device drivers are not easy to come by.

Depending on how often users actually use the system, it is worth considering

making backups

� Every night. The most important data should be backed up at least as

often as signi�cant changes are made.

� Every week. Less important data might only be worth backing up once a

week.

� Every month. For convenience you might want to record the setup of your

system software once in a while { even though this can be loaded in again

from source.

Backup software is usually intelligent enough to be able to extract only �les which

have been modi�ed since the last backup, so daily backups need not copy every

�le every night.
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How long should you keep a backup? It might take some time to discover

that a �le is gone. How long you keep backup tapes depends on how long you

value your data. A year is not an unreasoable length of time.

8.5 Intruders: Worms and Viruses

Worms and viruses are intruder programs which enter a system illegally and take

hold of the system in some way.

A virus is a piece of code which attaches itself to another program in order to

get executed surreptitiously.

A worm is a program which propagates from computer to computer, without

necessarily changing anything.

Other kinds of intruders are Trojan horses i.e. programs which masqeuerade

as something they are not, bacteria, which simply copy themselves in order to

overwhelm the system and logic bombs which go o� when some condition is met.

Multiuser systems are generally harder to a�ect with intruders than microcom-

puters since the operating system exercises a much greater level of control.

8.5.1 Back doors

Back doors or Trojan horses are faults in the system software, which devious

programs can use to gain access to the system from outside. In most cases these

are network based programs. Most intruders enter via a network, but on small

computers which use 
oppy disks or diskettes, they can also enter on disk.

Some program have become well-known backdoors in the UNIX world. send-

mail is one. Many backdoors are setuid root programs which contain bugs that

can be exploited by clever users, so that these users can gain privileged access.

How do we know when an intruder is on the system? This is an extremely

di�cult problem { there are many ways to hide intruders, so that { if one is not

speci�caly thinking about the possibility of threats, it is easy to miss them.

On UNIX inspired systems, the command netstat shows a list of machines

which are connected to the system. It gives a listing as follows:

Active Internet connections

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp 0 0 saga.1147 xantos-7.6000 ESTABLISHED

tcp 0 0 saga.1146 xantos-7.6000 ESTABLISHED

tcp 0 0 saga.1145 xantos-7.6000 ESTABLISHED

tcp 0 0 saga.1144 xantos-7.6000 ESTABLISHED
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tcp 0 0 saga.1143 njal.6000 ESTABLISHED

tcp 0 0 saga.1141 njal.6000 ESTABLISHED

tcp 0 0 saga.1138 njal.6000 ESTABLISHED

tcp 0 0 saga.1132 xantos-2.6000 ESTABLISHED

tcp 0 0 saga.1130 xantos-2.6000 ESTABLISHED

tcp 0 0 saga.1125 128.39.89.24.6000 FIN_WAIT_1

tcp 0 4 saga.1120 128.39.89.24.6000 FIN_WAIT_1

tcp 0 0 saga.1022 anyon.uio.no.login ESTABLISHED

tcp 0 0 saga.1094 xantos-7.6000 ESTABLISHED

tcp 0 0 saga.1086 xantos-4.6000 ESTABLISHED

tcp 0 0 saga.1023 anyon.uio.no.login ESTABLISHED

tcp 0 0 saga.1080 xantos-4.6000 ESTABLISHED

This gives an indication of who is currently connected. Of course, intruders

could connect when you are not watching, so another thing to do is to monitor

all the connections made to your machine continuously and dump the result to a

�le. This requires a considerable amount of storage and some skill in interpreting

the data. The program tcpdump will do this. Sun have their own version called

ether�nd.

On the other hand, we cannot live in a perpetual state of paranoia, thinking

that everyone is out to get us. A balance must be struck by taking all reasonable

precautions and being aware of the problem. Finally, the super-user should never

install software which is of suspicious or unknown origin.

8.6 Firewall

One way of designing a network to protect it from attack is to use a machine

as a \�rewall". That is { a barrier to stop the spread of network threats. The

idea is to isolate important machines by placing another highly secure machine

between the outside world and the local network. The �rewall is the only machine

which is connected to a wide area network. It is also connected to the local area

network, but it does not forward packets to the local network and vice versa.

Thus sensitive data can be hidden behind the �rewall, where they can be shared

on the local network but not by the external network.

8.7 Public and Private Keys

A clever intruder could always behave as an imposter { arranging it so that it

appeared that a network request came from a trusted machine, when in fact it
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came from the intruder's machine. Moreover, one could easily make a device

which collected all the information which was sent over a network and analyzed

it to �nd out what was being said { and to whom.

To try to prevent such problems from occurring, we can use a system of data

encryption (coding). The idea is to encode all data using a special key. Both the

sender and the receiver need to know the key { the encryption and decryption

algorithms are publicly known.

The problem is then to agree on a key. This can be achieved using public and

private keys.

Two parties wish to communicate with one another in private, so they encrypt

the data they send over the network. Each host has a private key which is a large

number which is encrypted with the user's password and stored in a database.

Each user also has a public key, which anyone can look up in a database.

In order to exchange information, both the sender and the receiver need to

have the correct key. The ingeneous part is that, both parties combine their

private keys with the others' public keys and end up with a conversation key

which they both agree on. To decode a message they only need the conversation

key and their own private key. The coding algorithm is based on some inspired

mathematics of modulo arithmetic.

Party A knows that party B is who he claims to be because

1. The message sent to A was encrypted using the conversation key.

2. The only way that B could generate the conversation key would be by

knowing A's public key and B's private key.

3. To know B's private key, B's password is needed.

Because the key encryption is quite time consuming and di�cult, it is only

used to establish an initial connection and conversation key. Once the conver-

sation key is known, normal crypt() type encryption is used for passing data.

This key encryption scheme is the basis of secure communication links like SSL

(Secure socket layer) and PGP (Pretty Good Privacy).
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Where next?

There are many topics which have only been covered super�cially in this intro-

duction. A deeper understanding of networks and system administration can be

found in

http://www.iu.hioslo.no/~mark/lectures
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Glossary

� Assembler: An assembler is a program which converts assembly language

into machine code. Assembly language is a mnemonic (symbolic) form of

the numerical machine code. Each instruction corresponds to one machine

code instruction.

� Bits: Binary-digits. 1's and 0's.

� Bu�er: Waiting area for data. A bu�er is used to synchronize the arrival

of data from a device with the eventual reading of the data by a program.

� Clock cycles: The system clock is an inmportant part of the hardware

of a computer. The clock works like a pump, driving the CPU to execute

intstructions. On earlt microprocessors, each instruction tool several cycles

of the system clock. Newer RISC processors can execute a whole instruction

per clock cycle, and some can even perform several instructions per clock

cycle, by ingeneous design of the hardware.

� Compiler: A program which converts a high level language into machine

code.

� Concurrent.: This is distinct from parallel. Processes which have the ap-

preance of being executed simultaneously, because the system can perform

time-sharing, are called concurrent processes.

� CPU: Central processor unit. This is the chip which adds numbers together

and moves data around in the memory. Parallel computers have several

CPUs.

� Fragmentation: Data are said to be fragmented when parts of the data

exist in very di�erent locations, joined together by pointers. Fragmentation

occurs because the OS must �nd a free space whereever it can. Ideally,

data would alway be stored in contiguous blocks, but in practice �les may

be deleted, leaving holes in the data which must then be �lled up by the

OS.

� Handshaking: A system of signals between two processes/computers which

allows them to tell each other when to start and stop sending information.

� Host: A machine, computer.
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� ID: Identi�er. A name or number which refers to something { often a

process or a user.

� I/O: Input/output.

� IPC: Inter-process communication. A mechanism by which unix processes

can exchange data with one another. See also RPC.

� kernel: The core of a multitasking operating system which deals with the

basic system resources. The kernel drives physical devices and handles I/O,

memory management and process scheduling.

� Loopback: The loopback device is a pseudo network device in the UNIX

operating system which, rather than sending data out onto a physical net-

work, sends packets straight back into the system. The protocols for talking

to the loopback device are the same as those for the physical network, so

programs employing interprocess communication have only to hold to a sin-

gle standard, regardless of whether the processes are on the same machine,

or on di�erent machines.

� Machine code: The basic numerical language of codes which the CPU

understands. Compilers and assemblers convert programs into machine

code.

� Multiplex: To switch between several activities or devices.

� Multi-user system: An operating system where several users can use the

system simultaneously.

� OS: Operating system.

� Parallel: Parallel processes are not merely timeshared (concurrent) but

actually run simultaneously on di�erent CPUs.

� Pixel: A single dot on the screen. This is one `grain' { or the object of

maximum resolution.

� Primary memory: RAM internal memory (see secondary memory).

� Primitive: A very low level function or routine. A basic element in a

library of functions.
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� RISC: Reduced instruction set chip. This is part of a new philosophy

to make microprocessors faster by giving them fewer (less complicated)

instructions which are optimized to run very fast. Usually each instruction

completes in a single clock cycle.

� RPC: Remote Procedure Call. This is a mechanism for executing tasks

on remote machines across the network. The RPC protocol makes use of

the XDR (external data representation) protocol for passing data. It is a

relatively high level interface between networked machines.

� Secondary memory: Disk or tape storage.

� Semantics: This term is used to describe the `method of operation' of

a particular system. The prescribed way in which a particular system is

supposed to behave. The logic of operation of the system.

� Single-user system: A system in which only one user can use the system

at a time.

� Starvation: A process is said to starve if it never gets a share of the CPU.

This can occur is there are errors or deadlocks in scheduling.

� Transparently: This word is often used to mean that something happens

without anyone needing to know the details about how it happens. For

example, the OS handles timesharing transparently { i.e. without users

needing to know about how it happens.

� Vector: An array of data or a segment of memory.

� Virtual: Almost, a likeness of, simulated.
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