
CPSC-662 Distributed Computing Interprocess Communication

1

Interprocess Communication

• Primitives

• Message Passing: issues

• Communication Schemes

• Reading: Colouris, Chapter 4

Interprocess Communication (IPC)

Primitives for interprocess communication
• message passing

– the RISC among the IPC primitives
• remote procedure call (RPC)

– process interaction at language level
– type checking

• transactions
– support for operations and their synchronization on shared

objects

lack of shared memory communicate by
sending messages

CPSC-662 Distributed Computing Interprocess Communication

2

Message Passing

• The primitives:
send expression_list to destination_identifier;

receive variable_list from source_identifier;

• Variations:
guarded receive:

receive variable_list from source_id when B;

selective receive:
select

receive var_list from source_id1;
|receive var_list from source_id2;
|receive var_list from source_id3;

end

Semantics of Message-Passing Primitives

• blocking vs. non-blocking

• buffered vs. unbuffered

• reliable vs. unreliable

• fixed-size vs. variable-size messages

• direct vs. indirect communication

CPSC-662 Distributed Computing Interprocess Communication

3

Blocking vs. Non-Blocking Primitives

send

receive

blocking non-blocking

Returns control as soon as
message queued or copied.

Signals willingness to
receive message.
Buffer is ready.

Returns control to user
only after message has
been sent, or until
acknowledgment has
been received.

Returns only after message
has been received.

•Need buffering:
•still blocking
•deadlocks!

•Tricky to program.

•Reduces concurrency.

problems

Buffered vs. Unbuffered Primitives

• Asynchronous send is never delayed
– may get arbitrarily ahead of receive.

• However: messages need to be buffered.
• If no buffering available, operations become blocking, and

processes are synchronized on operations: rendezvous.

invoke
entry

copy input parms

copy output parms

accept
on entry

rendezvous

invoke
entry

copy input parms

copy output parms

accept
on entryrendezvous

CPSC-662 Distributed Computing Interprocess Communication

4

Reliable vs. Unreliable Primitives
• Transmission problems:

corruption loss duplication reordering
• Recovery mechanism: Where?
• Reliable transmission: acknowledgments

• At-least-one vs. exactly-one semantics

send

receive

time-out
send

receive

time-out

A = 0
inc(A)

A = 1

A = 2

inc(A)

A = 0
inc(A)

A = 1

A = 1

inc(A)

deja-vu!

re
qu

es
t t

ab
le

Direct vs. Indirect Communication
• Direct communication:

• Variation thereof:

send(P, message)
receive(Q, message)

send(P, message)
receive(var, message)

C1

C2

S

receive(&client_id, &msg)

receive(&client_id, &msg)

send(S, msg1)

send(S, msg2)

server

CPSC-662 Distributed Computing Interprocess Communication

5

• Indirect communication:
– Treat communication paths as first-class objects.

• Mailboxes:

send(M, msg1)

send(M, msg1)

send(M, msg1)

receive(M, &msg)

receive(M, &msg)

....
mailbox M

• Indirect communication (cont)
• Ports:

– example: Accent (CMU)

Process

Port P

FIFO queue

send(P, msg1)

send(P, msg2)

receive(P, &msg)

• multiple senders
• only one receiver
• access to port is

passed between
processes in form of
capabilities

CPSC-662 Distributed Computing Interprocess Communication

6

Communication Schemes

one-to-one unicast

one-to-many multicast

many-to-one

many-to-many

