
CPSC-662 Distributed Computing Object-Oriented Distributed Technology

1

Object-Oriented Distributed Technology

• Objects

• Objects in Distributed Systems

• Requirements of Multi-User Applications

• Reading:
– Coulouris: Distributed Systems, Chapter 5

Object-Oriented Languages

• Object Identity
– “object identifiers” (OIDs)
– OIDs as first class values

• Actions
– Inititiated by sending message to object requesting method invocation
– State in object may change
– cascaded invocations of methods

• Dynamic Binding
– The method executed is chosen according to the class of the recipient

of the message.

• Garbage Collection
– Dynamically allocated instances may be explicitely deleted or space is

freed implicitely by garbage collector.
– GC in distributed systems?

CPSC-662 Distributed Computing Object-Oriented Distributed Technology

2

Objects in Distributed Systems

• Object Identity in a Distributed System
– Remote object identifiers (ROIDs)
– Ex. Java: ROID = endpoint (Java vm) + identifier (ObjID)
– ROIDs as first-class values
– Service for comparing remote object identifiers

• e.g. Java: RemoteObject::equals()

• Actions in a Distributed Object System
– Remote Method Invocation

• The Role of Proxies for Transparent RMI
– Local proxy for each remote object that can be invoked by local

object.
– Local proxy behaves like local object, but, instead of executing

message, forwards it to the remote object. (client stubs)
– Remote object has skeleton object with server stub procedures

Proxies and Skeletons

X
skeleton

for Aproxy for A

dispatcher

A

ROID module

communication
module

request

reply

CPSC-662 Distributed Computing Object-Oriented Distributed Technology

3

Proxies and Skeletons (cont)

• Proxies:
– Need proxies to invoke remote objects.
– Proxies are created when needed whenever ROID arrives

in Reply message.
– ROID module manages proxies and ROIDs.

• Dispatchers and Skeletons:
– Not necessary for systems with reflection capabilities.
– e.g. class Method in Java 1.2 reflection package:

method invoke can be called on instance of Method.
Dispatcher now generic and skeleton unnecessary.

Arguments and Results in RMI

• Semantics of passing arguments for RMI in object-oriented
languages needs to be defined. Why?

• Argument and Result passing in Java RMI:
– When type of parameter is defined as remote interface, argument or

result is passed as ROID (by reference).
– Other non-remote objects may be passed by value if they are

serializable.

• Which objects can be accessed by RMI?
– Any object can be accessed by RMI
– Distinguish between remote objects and local objects. (e.g. Java)
– Use interface definition language (IDL)

• Problem: migration/replication

CPSC-662 Distributed Computing Object-Oriented Distributed Technology

4

Arguments and Results in RMI

• Semantics of passing arguments for RMI in object-oriented
languages needs to be defined. Why?

• Argument and Result passing in Java RMI:
– When type of parameter is defined as remote interface, argument or

result is passed as ROID.
– Other non-remote objects may be passed by value if they are

serializable.

• Which objects can be accessed by RMI?
– Any object can be accessed by RMI
– Distinguish between remote objects and local objects. (e.g. keywords

or classes with interface compiler)
– Use interface definition language (IDL)

• Problem: migration/replication

Dynamic Binding

• Dynamic method binding should also apply to RMI.

• Smalltalk: Allow any message to be sent to any object, and
raise exception if method is not supported.
– Distributed Smalltalk: general-purpose proxies.

• Java RMI:
– dynamic binding as a natural extension of local case
– Example:

Shape aShape = (Shape) stack.pop();

float f = aShape.perimeter();

CPSC-662 Distributed Computing Object-Oriented Distributed Technology

5

Garbage Collection

• Some languages (Java, Smalltalk) support garbage collection.
• Explicit memory management difficult/impossible in

distributed environment.
• Distributed garbage collection typically realized in ROID

modules. Each ROID module:
– keeps track how many sites hold remote ROIDs for each local object

(maintains holders table)
– informs other ROID modules about generation/deletion of ROIDs for

their local objects (through the use of addRef() and removeRef())

• Local garbage collector collects objects with no local or
remote references.

• Reference counting (addROID()/removeROID()) over
unreliable networks?

