
JavaGroups �

Group Communication Patterns in Java

Bela Ban

Dept� of Computer Science

Cornell University

bba�cs�cornell�edu

July �� ����

� Overview

JavaGroups is a group communication toolkit written in Java providing reliable
multicast communication� Its �rst version uses the group communication protocols
provided by the Ensemble �Hay��� distributed communication toolkit� but future
versions will have their own built�in group communication protocols�
Group communication allows communication endpoints to form a group� Messages
sent to a group are received by all members of that group� New members may
join a group �and subsequently receive all messages sent to the group	� and cur�
rent members may leave a group at any time� Members that have crashed will
eventually be removed from a group�
Communication endpoints can be processes or objects� essentially any entity that
can send and receive messages to
from a group�
At the core of JavaGroups is a low�level abstraction of a communication endpoint
of a group � a channel� When a channel is created it is given a name� Multiple
channels with the same name form a group� A new channel automatically joins
the group under the given name� and leaves it when it is destroyed� Groups only
exist conceptually and can be referred to by their name� Channels are used to
represent a member of a group�
Channels can be used to send messages to single members� a subset of the members�
or all members� When a channel receives a message� it is stored until a client
dequeues it from the channel� In order to be able to send and receive messages�
a client must �rst connect to the channel� Only one client can be connected to
a channel at any time� Other clients can only connect to the channel when the
previously connected client disconnects from the channel��

�However� other clients may create a new channel with the same name�

�



Channels are the lowest�level abstraction provided by JavaGroups to create group
communication aware applications� Since they are conceptually similar to sock�
ets� their use should be straight�forward to programmers familiar with sockets�
However� like sockets� channels provide only a relatively low�level abstraction for
asynchronously sending and receiving messages� Any task more complex� like for
example synchronous message exchange� RPC�like communication� correlation of
request with response�s	� or remote method invocation� has to be written by the
programmer� One of JavaGroups
 goals is to provide small pre�fabricated building
blocks �group communication patterns	 that perform exactly these tasks� on top
of the channel� allowing programmers to access group communication at a higher
level of abstraction� These building blocks should be �a	 su�ciently small� so that
they can be used independently� and �b	 they should be able to be combined to
create larger building blocks�
A channel is an abstract class and needs to be specialized to provide real group
communication facilities� In the current version� a subclass �EnsChannel	 is pro�
vided that accesses Ensemble to do this� A future version will contain a native Java
implementation of Ensemble
s group communication protocols �e�g� JChannel	�

��� Architecture

Ensemble Ensemble

Sockets

Client

Channel

JavaGroups

Java VM

Higher Level
Abstractions

Process Group

Sockets

Client

Higher Level
Abstractions

Channel

JavaGroups

Java VM

Figure �� Overview of Architecture

The current architecture �using Ensemble	 is shown in �g� �� Clients may access
one of the higher�level abstractions� or they may access channels directly� Note
that since Channel is an abstract class� a client will always have to access a

�



speci�c subclass of Channel� e�g� EnsChannel for a channel implementation that
uses Ensemble� The �Java	 implementation of EnsChannel starts up an Ensemble
process with which it communicates via sockets� Ensemble takes care of �nding
other Ensemble process groups with the same name and joining them��

��� Communication Modes

A number of communication modes� as described below� can be identi�ed for
group communication� When designing interfaces for group communication� these
�sometimes con�icting	 modes have to be taken into account�

����� Message Exchange� Synchronous vs� Asynchronous

Communication between a sender and one or more receivers can be synchronous�
that is the caller is blocked until one or all responses are returned� or asynchronous
where the caller returns immediately after sending the message� In the latter case�
the caller has to retrieve the response�s	 later and correlate it
them to the request
sent �usually using some form of message numbering	�

����� Message Reception� Pull vs� Push

Pull�style message retrieval means that the caller actively has to retrieve the re�
sponse�s	 after sending a request while with the push�style the caller will be sent
any responses� In the �rst case� the caller may have to allocate a thread to retrieve
the responses in the background� in order to be able to continue the work� In the
second case� usually a callback �a function or method	 will be invoked when a
response is received �or� alternatively� when all responses have been received	�

����� Message Sending vs� Remote Method Invocation

The content of data exchanged between entities can be a low�level message con�
taining sender and receiver address� a message number and a simple byte bu�er�
or it can be on the higher abstraction level of a method invocation on remote ob�
jects� While the latter seeks to provide transparency by extending the procedure
call paradigm to remote group objects �RPC	� the former would typically be used
when sending unstructured data �e�g� audio� video	 over a channel�
Note that remote method invocation is mostly synchronous while message sending
can be synchronous or asynchronous�

�Note that the Ensemble executable �outboard� has to be available� Also� there has to be a
gossip process started if IP multicasting is not available� Refer to �Hay��� for details�

�



����� � Response vs� N Responses

When sending a request to a group� there might be none� one or more responses�
depending on the policy chosen� Sometimes just the �rst response received is
needed �e�g� in actively replicated servers	� while at other times all responses are
needed �e�g� results of a computation� load�balanced over all members of a group	�

����� Timeout vs� No Timeout

All modes of communication may be accompanied with a timeout which is sup�
posed to terminate blocking calls after a certain time span has elapsed� Timeouts
allow to determine the maximum amount of time needed for certain calls�

� Group Communication Patterns

Group communication patterns are building blocks and 
 or communication algo�

rithms frequently encountered in applications employing group communication�
Some patterns make use of �the abstract notion of	 channels� while others use
channels only indirectly and 
 or can be used independently altogether� They
greatly simplify programming by encapsulating recurring pieces of group commu�
nication into su�ciently small and reusable Java classes� There are three types
of patterns� following the terminology in �GHJV��� they are creational� struc�
tural and behavioral patterns� Creational patterns deal � as their name implies
� with creation of components �either structural or behavioral ones	� abstracting
the instantiation process� Structural patterns are concerned with how objects and
classes are composed to form larger structures� They typically show in the form of
classes� Behavioral patterns are concerned with capturing algorithms in a reusable
form� They are typically represented by class methods�
A programmer is free to choose whether to use channels and none of the patterns�
or whether he requires a higher level of abstraction by using one �or more	 patterns�
An example of a creational pattern is the Configurator class which creates� ini�
tializes and starts a protocol stack given a setup string�
An example of a structural pattern is the SyncCall class which emulates syn�
chronous message exchange on top of �inherently asychnronous	 channels� Its
value is that the caller does not have to correlate one or more responses to re�
quests himself� but is blocked until the �rst �or any N responses	 is returned�
An example of a behavioral pattern is failure detector which regularly pings desig�
nated members of a group and � if a member crashed � indicates this to the group
membership service��

Both structural and behavioral patterns are intended to be used in both developing
communication applications and protocols�

�This service has not yet been implemented�

�



The value of patterns is that they are independently reusable pieces of recurring
design decisions which are based on a very generalized concept of group com�
munication �namely channels	 and can therefore also be used on top of other
group communication toolkits�� However� contrary to frameworks� which impose
a certain structure of usage on clients� JavaGroups is only a toolkit which gives
programmers the freedom to decide which pieces to use and which not�

��� Utility Classes

����� DistributedHashtable

A DistributedHashtable is derived from java�util�Hashtable and allows to
create several instances of hashtables at di�erent locations� All of these instances
have exactly the same state at all times� When creating such an instance� a group
name determines which group of hashtables will be joined� The new instance will
then query the state from existing members and update itself before starting to
service requests� If there are no existing members� it will simply start with an
empty state�
Modi�cations such as put� clear or remove will be propagated in orderly fashion
to all replicas� Read�only requests such as get will only be sent to the local copy�
Since both keys and values of a hashtable will be sent across the network as copies�
both of them have to be serializable� i�e� implement interface Serializable�
This allows for example to register remote RMI objects with any local instance
of a hashtable� which can subsequently be looked up by another process which
can then invoke remote methods �remote RMI objects are serializable	� Thus� a
distributed naming and registration service can be built in just a couple of lines�
A DistributedHashtable allows to register for noti�cations� e�g� when a new
item is set� or an existing one removed� All registered listeners will noti�ed when
such an event occurs� Noti�cation is always a local process� for example in the
case of removing an element� �rst the element is removed in all replicas� which
then notify their listener�s	 of the removal �after the fact	�

����� Messages

A Message is a simple class containing a unique ID� the receiver
s and sender
s ad�
dress �as an Object	� a byte bu�er to contain the actual data and a �ag indicating
whether it is a request or a response�
It will be extended in that there will be additional methods for storing and re�
trieving objects and atomic Java types to 
 from the byte bu�er� for adding data
at the head of the bu�er �without copying� see �����	 etc�

�Note that those patterns that require a channel most often only require a SEND and RE�
CEIVE Java interface� Patterns that are not directly layered on top of channels are named utility

patterns�

�



����� Data

Class Data maintains a byte bu�er and adds methods to add data �raw bytes�
atomic Java types or objects	 at the head or tail of the byte bu�er� Also� it allows
to read 
 write objects to 
 from the bu�er� Data is used by class Message ������	�

����� Sets

Containers for objects �e�g� addresses or endpoints	� Includes methods for adding�
removing members� and intersection 
 union with other sets� Not yet implemented

See JavaGroups�JavaStack�Membership�

����� Queue

The Queue class is widely used in producer � consumer communication� A pro�
ducer puts items in the queue� and a consumer removes them from the queue�
When there are no items available� a consumer is blocked �unless it speci�ed a
maximum timeout to wait for items to become available	� Addition and removal
of items is synchronized� i�e� no two entities �e�g� consumer and producer� or one
producer and another producer	 can be in the queue at the same time�

��� Creational Patterns

����� Con�gurator

Only preliminary� describe in more detail

Given a setup string for a protocol stack such as
�UDP�port������	FRAG�size�
����	NAK	FIFO	TOTAL�� the con�gurator treats
each part of the string between colons as class name followed by an optional
con�guration parameter� It creates an instance of each class� starting with UDP

and layers the classes above each other� Then all the instances are initialized and
started�

��� Structural Patterns

����� Channel

A channel represents the group endpoint over which messages can be sent to all
�or a subset	 of the group members and over which messages multicast to group
members can be received� It is on purpose designed to be as simple as possible�
similar in semantics to BSD sockets�
Each channel has a name� Channels with the same name form a group� that is�
messages sent by a channel will be received by all other channels with the same
name�

�



To use a channel� a client has �rst to connnect to it� When done� it should
disconnect from the channel� There can always only be a single client connected
to the same channel� When connected� messages received by the channel will be
stored in a queue until Receive is called� which returns the oldest message by
removing it from the queue� All messages will be deleted from the queue when
the client disconnects�
The main reason for the need to connect to a channel before using it is that this
serialization of access to the channel 
resource
 prevents clients from removing
messages from the channel without other clients seeing them� That is� multiple
clients of a channel would not see the same sequence of messages��

A client may send a message to ��	 a single other channel� ��	 a number of channels�
or ��	 all of the channels of the same group using the Send ����	 or Cast ��	
methods� To �nd out the other channels in the group� method GetMembers can be
used� It returns the addresses of all members in the group� Since these addresses
will typically vary in their form and content� they are only returned in the most
general form of Object� Each subclass of Channel has to narrow such an address
to the form used by it� Users of JavaGroups must not be concerned about the
contents and real class of an address� as this is opaque� They can essentially only
receive addresses as result of method calls and subsequently use them as target
addresses in sending messages to a single or a set of channels�
Channels use the Half�Sync
Half�Async pattern �SC��� in that they present a
synchronous interface to the caller �Receive	� but use asynchronous message re�
ception and message queues to block and awake callers� There are two reasons for
using a pull�style for receiving messages on a channel� �rst� it is similar to what
programmers are used to do when receiving data from a socket� and second� by
not having to use callback into user code at this level� channels cannot get blocked
by user�code that takes a long time to complete or that even recursively calls a
method of the channel�
If a push�style of message reception is desired� other patterns on top of channel
can be used �such as PullPushAdapter ������	 or Dispatcher �������		�

EnsChannel EnsChannel is a subclass of Channel and a concrete implementa�
tion of the latter
s methods� To create an instance of it� its constructor accepts
a channel name and properties �speci�ed as string	� The channel name is used
by Ensemble to �nd all other members �channels	 in the process group� and the
property string de�nes the protocol stack that Ensemble is supposed to create for
this process group �see �Hay��� CS ���	�

�This would be di	erent in a push�style channel� where all clients are noti
ed when messages
arrive�

�



Example The code below shows a simple example of how an EnsChannel is
used�

public class ChannelTest implements Runnable �

private Channel channel�null�

private String props��Top�Heal�Switch�Leave�Inter�Intra�Elect���

�Merge�Sync�Suspect�Top�appl�Pt�ptw���

�Pt�pt�Frag�Stable�Mnak�Bottom��

public void Start�	 throws Exception �

channel�new EnsChannel��TestChannel�
 props	�

channel�Connect��


	�

new Thread�this
 �ChannelTestThread�	�start�	�

for�int i�
� i � �
� i��	 �

channel�Cast�new String��This is msg �� � i	�getBytes�		�

Thread�currentThread�	�sleep��


	�

�

channel�Disconnect�	�

channel�Destroy�	�

�

public void run�	 �

while�true	 �

try �

Message msg�channel�Receive�
	� �� no timeout

System�out�println�new String�msg�GetBuffer�			�

�

catch�NotConnected conn	 �break��

catch�Exception e	 �System�err�println�e	��

�

�

public static void main�String args��	 �

try �

ChannelTest test�new ChannelTest�	�

test�Start�	�

�

catch�Exception e	 �System�err�println�e	��

�

�

First a new channels is created given a name and certain properties �used by
Ensemble	� Then the channel is connected �a wait of � seconds is added to let the
channel discover other channels of the same name	� The main part of the Start
method sends �� messages to all channels with the same name �i�e�� the process
group	� waiting � second between sends� and �nally disconnects from the channel
and destroys it�
Note that a separate thread is started to perform the task of receiving messages
from the channel �remember� channels use the pull�style� so message have to be

�



retrieved actively	� When a message is received� its contents are converted into a
string and printed on stdout�
For an example demonstrating the push�style see section ������

����� Synchronous Group Message Call �SyncCall	

A synchronous call object sends an asynchronous message to a group and waits
for the �rst� the �rst N� or all responses� The caller is blocked until response�s	
is
are returned�
SyncCall objects are intended to be used on objects that implement the
Transportable interface� They allow to emulate synchronous message exchange
on top of an asynchronous message transport� that is the sending of a message to
a group �or a single member	 and the reception of the result in one step� When
sending messages to a group� there might be none� one or more responses� The
SyncCall interface allows to specify how many responses should be returned �one�
none� n� or all	� Additionally� a timeout de�nes the maximum amount of time to
wait for the arrival of a message�
To implement a synchronous message call� SyncCall is given an object that imple�
ments interface Transportable �e�g� a channel	� This interface contains a Send

and a Receive method� which allows SyncCall to send a request and wait for the
corresponding response�s	�
SyncCall does not use the MessageCorrelator class� but instead implements a
simple�r	 and less sophisticated message correlation scheme�
Other patterns such as RemoteMethodCall ������	 make use of SyncCall�

����� Message Correlator

This class correlates requests with their responses� The caller can choose to get the
�rst response� N responses or all responses �each call can also include a timeout
to prevent having to wait forever	�
It o�ers essentially � major methods� AddRequest to insert into its hashtable
a message keyed by its message ID� AddResponse to add a response macthing
the request message ID to the corresponding item
s queue in the hashtable�
GetResponse to wait until either a response was received or a timeout has occurred
and GetResponses to wait until N responses have been received or a timeout has
occurred�
The message correlator is for example used by the Dispatcher �������	�

����� MUX

Maintains several channels� caller speci�es channel over which message is to be
sent� Not yet implemented� Is it used at all � Dispatcher does the same ���

�



����� Demux

Message

Receive

Queue

Channels

Figure �� Architecture of Demultiplexer

A demultiplexer combines the output of multiple channels into a single �virtual	
channel� Channels can be added and removed from the demultiplexer� For each
new channel� a separate thread is started which retrieves messages from the chan�
nel and adds them to a message queue maintained by the multiplexer� Clients
calling method Receive will receive the message retrieved from that queue� Note
that this pattern is similar to the Unix SELECT system call�
Although the Demux class implements interface Transportable� it is only envisaged
that Receive should be used� Method Send is not implemented� for sending
messages� the underlying transport should be used �e�g� a channel	�

����
 PullPushAdapter

This class is a converter �or adapter� as used in �GHJV���	 between the pull�style
of actively having to receive messages and the push�style where clients register
a callback function or method which is invoked whenever a message has been
received� It allows a client of a channel to be noti�ed when messages have been
received instead of having to actively poll the channel for new messages� This
eliminates any need for the clients to allocate a separate thread for receiving
messages�
A PullPushAdapter is always created with a reference to a class that imple�
ments interface Transportable �e�g� a channel	� Clients interested in being
called when a message is received can register with the PullPushAdapter us�
ing method AddListener� They have to implement interface MessageListener�
whose Receive method will be called when a message arrives� Any number of
clients can register and all of their Receive methods will be called when a mes�
sage arrives�
Upon creation� an instance of PullPushAdapter creates a thread which constantly
calls the Receive method of the underlying Transportable instance �e�g� a chan�

��



nel	�� When a message is received� if there are any registered message listeners�
all of them will be called �that is� method Receive will be invoked	 in turn�
As this class does not implement interface Transportable� but uses it for receiving
messages� an underlying object has to be used to send messages �e�g� the channel
on top of which an object of this class resides	�

Example

public class PullPushTest implements MessageListener �

private Channel channel�

private PullPushAdapter conv�

public void Receive�Message msg	 �

System�out�println��Received msg� � � msg	�

�

public void Start�	 throws Exception �

channel�new EnsChannel��PullPushTest�
 null	�

conv�new PullPushAdapter�channel
 �	�

channel�Connect��


	�

conv�AddListener�this	�

for�int i�
� i � �
� i��	 �

channel�Cast�new String��Hello world�	�getBytes�		�

Thread�currentThread�	�sleep��


	�

�

channel�Disconnect�	�

channel�Destroy�	�

�

public static void main�String args��	 �

PullPushTest t�new PullPushTest�	�

try �t�Start�	��

catch�Exception e	 �System�err�println�e	��

�

�

Contrary to using channels �using pull�style message reception	� here no separate
thread has to be allocated to receive message� Instead� a PullPushAdapter is lay�
ered on top of the channel and a reference to the client object added� This causes
the client
s Receive method to be called whenever a message has been received by
the PullPushAdapter� Note that compared to the pull�style example� push�style
message reception is considerably easier �no separate thread management	 and
requires less code to program�
For an example showing the use of the pull�style see section ������

�Note that the channel currently has to be connected� otherwise an error message is issued�

��



����� MethodCall

This class represents a local method call� It is created giving the name of the
method to be invoked �later	 and a number of arguments� Arguments can also be
added separately �they have to be added in the order of their formal parameters	�
Method Invoke takes as argument the target object on which the method is to be
invoked� It returns an Object� which is either a return value �can also be null	�
or an exception� MethodCall is extended by RemoteMethodCall ������	 to invoke
methods in remote objects�
Finding the correct method to invoke can be a complex process�
The default method resolution mechanism implemented by method
Class�get
declared�Method follows a minimalistic approach which in cer�
tain cases might not produce the desired result�� �Ban��� describes a more
�exible approach to dynamic method lookup� similar to CLOS
 method resolution
approach�
��� Add section on types of parameters
 e�g� no atomic types ��

Describe� Automatic mapping of object arguments to atomic types� also mapping

of atomic return values to objects�

��� Add section on matching of arguments with formal parameters

����� RemoteMethodCall

RemoteMethodCall extends MethodCall ������	 with the ability to invoke
methods in remote objects� Its constructors additionally accept a transport
�Transportable	 �e�g� a channel	 over which the method call will be sent to
the remote object�
As a remote method call to a process group may return more than a single response�
two methods are added which use SyncCall ������	 to send a request to the remote
object and return the �rst or N responses� SendGetFirst invokes the remote
method in all group members and returns the �rst response received as an object
�or exception	� or null� if a timeout occurred� SendGetN invokes the remote method
in all group members and returns N responses� or null� if a timeout occurred �and
no response has been received	� If N is �� no responses are expected� essentially
making the remote method call one�way�
RemoteMethodCall is mainly used on the client side� Its equivalent on the server
side is MethodInvoker ������	�
In its dynamic way of invoking methods of remote objects� RemoteMethodCall
bears similarity to JEDI �ADMR���� However� JEDI focuses on unicast commu�
nication�

�Also� dynamic method resolution �at runtime� does not semantically conform to static method
lookup �compile�time��

��



����� MethodInvoker

Transportable (Channel)

PullPushAdapter

MethodInvoker

MethodCall

Object

Figure �� MethodInvoker example

A MethodInvoker is used on the server side to invoke methods sent by a client
�using RemoteMethodCall	�
As shown in �g� �� a method invoker uses a transport to receive method invoca�
tions and to send responses� When created� it automatically creates an instance
of PullPushAdapter with which it registers� Whenever the PullPushAdapter re�
ceives a message� it will the Receive method of the method invoker� The latter
extracts a MethodCall object from the message
s byte bu�er and invokes it against
its registered object� When the return value is an exception� it will be thrown�
otherwise the return value will be returned to the caller� i�e� the method invoker
uses the transport to send the response back to the caller�
Note that client and server roles may be switched at will as processes in
the server role �using MethodInvoker	 may themselves become clients �using
RemoteMethodCall	 and client may become servers at any time �by registering
themselves with an instance of MethodInvoker	�
The combination of MethodInvoker in the server role and RemoteMethodCall in
the client role make up for simple and light�weight remote method invocation
communication mechanism� However� if more than a single object needs to be
registered in a server� if more than one group needs to be joined� and 
 or if client
and server roles need to be combined in a single pattern� then class Dispatcher
�������	 should be preferred�

������ Dispatcher

A Dispatcher maintains a number of channels and allows clients to join one or
more of those channels� and send and receive messages to
from channels� When an

��



Channel

PullPushAdapter

MethodInvokerMessageCorrelator

Response Request

ResponseRequest

1 2 3 4

ChannelEntry

Dispatcher

Channels

"Foo"

"Bar"

"Test"

Clients

Figure �� Architecture of Dispatcher

object joins a channel �given the channel name	� it will be dispatched all messages
received on that channel in the form of method invocations� Note that in order
to receive all messages� an object should implement the methods required by the
group �application�speci�c	� It may itself invoke methods on all members of the
channel �a channel is nothing else than a group �	�
Note that an object that has not previously called Join�	 is nevertheless able to
send messages to the group members and receive responses� but requests dis�
patched to the group members will not be dispatched to it�
The Dispatcher class is a replacement for classes RemoteMethodCall �client side	
and MethodInvoker �server side	� Instead of using � classes� client�server applica�
tions can more conveniently be written using the dispatcher� Its main advantage
is that� instead of assuming � client and � server� it allows multiple clients to
issue requests and register to get their methods invoked� In one line� the dis�
patcher is a more sophisticated class o�ering the combined interfaces of both
RemoteMethodCall and MethodInvoker and allows multiple objects to be regis�
tered�
The architecture of the Dispatcher is shown in �g� �� A hashtable maintains a
name and a channel entry �ChannelEntry	 for each channel created in the dis�
patcher� Clients wishing to send messages have to specify which channel to use
�by giving its name	�
A client does not have to explicitly have to create a new channel� may may just
call the dispatcher
s Join method� When the channel already exists� the caller
will be added to the channel
s object list� otherwise a new channel will be created
�ChannelEntry	 and added to the dispatcher
s hashtable with the channel
s name
as key�
A ChannelEntry consists essentialy of a channel� a PullPushAdapter� a
MessageCorrelator and a MethodInvoker� Sending a message using the dis�
patcher involves the following steps� �rst ChannelEntry corresponding to the

��



name given in the call is received� Then a Message is created and registered with
the MessageCorrelator instance under its message ID� Subsequently the mes�
sage is sent ��	� using the channel as transport� Finally� the result �or results	 is
retrieved using the MessageCorrelator ��	�
The previous description applies to a caller in the client role� The server role
process is as follows� when a message is received by the PullPushAdapter� it
is will be forwarded either to the MessageCorrelator if it is a response� or to
the MethodInvoker if the message is a request�� The case of a response was
treated above ��	� when a request is received ��	� the method invoker constructs
a MethodCall and applies it to all of the target objects listening to that channel
in turn� The return values are sent back using the channel ��	�

Example The example code below does essentially the same as the examples in
sections ����� and ������

public class DispatcherTestChannel �

public Date GetDate�	 �return new Date�	��

public static void main�String args��	 �

DispatcherTestChannel obj��

Dispatcher disp�new Dispatcher�	�

try �

obj��new DispatcherTestChannel�	�

disp�Join��GroupA�
 obj�	�

while�true	 �

System�out�println��Sending method�	�

d�disp�SendGetFirst��GroupA�
 �GetDate�
 null
 �


	�

if�d �� null	

System�out�println��Received response� � � d	�

Thread�currentThread�	�sleep��


	�

�

�

catch�Exception e	 �System�err�println�e	��

�

�

The code demonstrates that an object acting in the server role �o�ering method
GetDate	 can at the same time also act in the client role by invoking GetDate on
all member dispatchers of the group and displaying the �rst returned result�
By creating a dispatcher� we are able to invoke remote methods on all members of
a group �in this case �GroupA�	 and receiving return values� By joining a group�
we are additionally able to act as a server for method GetDate�

�Whether a message is a request or a response is determined in by a �ag in the message itself�

��



It is clearly seen here that the value of a dispatcher lies in the simplicity with
which methods can be invoked� providers �servers	 of methods do not have to
receive messages� �nd out the correct method to invoke� generate a result and use
a transport to send the result back to the caller� Instead� all of this is automatically
performed by the Dispatcher class�

������ Promise

Promises �LS��� are used to start a computation and return while the computation
is being performed �just after starting it	� In the context of group communication�
a promise is used to send a request to all �or N	 members of the group and return
immediately� The promise can be checked for completion and number of responses
received so far� The caller might perform some other work� periodically check the
status of the computation� and � depending on it � retrieve the result�s	 from the
promise�
Promises allow clients to asynchronously invoke a method call without having to
be blocked until the result is returned�
Their main value lies in starting multiple invocations in parallel� and gathering
the results later �load balancing	�
In contrary to the work described in �LS���� promises as used in the context of
JavaGroups are not returned from some method call� but used as starting point
as well�

������ RepeatedUnicast

Frequently clients accessing a server will �nd that the server has crashed� or
for some other reasons� does not respon within a certain time frame� In this
case� the client may access another server� possibly at a di�erent location� The
RepeaterUnicast class allows to specify a number of server locations �addresses	
that will be tried out in turn until a response is received� or a timeout has occurred�
An instance of this class is initialized with a transport which will be used to send
and receive messages� and a number of addresses to which the request will be sent�
Method Send tries to send a Message to the �rst member� If a response is received
within timeout milliseconds� it is returned� Otherwise� the member is removed
and the next address is tried out� If no member address is found to be functional�
an exception is thrown�
Method SendMethod does the same as Send� but instead of just sending a message�
a method is sent �in the form of RemotemethodCall� The result is returned as an
object�
This class is used for example in the group membership protocol �GMS	 implemen�
tation� a new member keeps sending a JOIN request to each member in succession�
until a JOIN is successful �which usually happens at the �rst attempt	�

��



������ StableStorage

Kind of an interceptor that � before passing messages on � stores them on stable
storage� This allows clients that reconnect after a certain time� to request older
messages to be replayed� Could be used in conjunction with PullPushConverter�
when no client is connected� whenever a message is received� it will be stored�
When a client connects� all stored messages are pushed to the client and subse�
quently purged from stable storage�
Not yet implemented

������ LazyEvaluator

Pushes messages �or method invocations� if used in conjunctions with MethodCall	
to client�s	� Used e�g� with PullPushConverter� Rather than blocking the

pusher
� it enqueues messages and uses its own thread to push them one after
the other to clients� Thus clients can block the LazyEvaluator� but never the

real
 pusher� Allows the pusher to send non time critical noti�cations to clients
without blocking�
Needs to be re�ned

��� Behavioral Patterns

Behavioral patterns are less �ne�grained than structural patterns� They capture
frequently used algorithms and 
 or communication exchanges between entities
in the domain of group communication� Using structural patterns to accomplish
their tasks� they are intended to signi�cantly reduce the amount of code needed
to implement protocols and applications� Also� assuming that these patterns have
been tested rigorously to assure their correctness� the probability of introducing
errors is greatly reduced�
Potential candidates are�

� Group Membership Protocol

� Failure Detector� monitors a group of objects by sending them periodic
heartbeats� Noti�es registered entities of suspected objects�

� Primary � Backup

� Load Balancing

� Voting and Election Protocols �coordinator election	

� ��Phase Commit 
 Distributed Commit

� Flush Protocol

��



� State Transfer

� Repeating Unicast� continues sending a message to a �unicast	 member of
a group until a response is received� If a response is not received after
some timeout� the next member is used� Continues as long as members are
available or a reponse is received� A user callback will be invoked when a
member is not available �e�g� to suspect that member and remove it from
the group	� Used e�g� for JOIN
LEAVE implementation� a new member
repeats sending JOIN requests to a member of the group until it receives a
response�

� Random Unicast� similar to Repeating Unicast� A unicast message is sent
to a randomly selected member of a group� Used for load�balancing�

References

�ADMR��� Jonathan Aldrich� James Dooley� Scott Mandelsohn� and Adam
Rifkin� Providing Easier Access to Remote Objects in Distributed Sys�

tems� California Institute of Technology� Pasadena� CA ������ �����

�Ban��� Bela Ban� Static vs� Dynamic Method Resolution in Java�
The Case For Argument Based Method Selection� Techni�
cal report� Cornell University Computer Science Dept�� �����
http	��www�cs�cornell�edu�home�bba�papers�html�

�CS ��� CS Dept Cornell University� Ithaca NY ������ The

Ensemble Distributed Communication System� �����
http�

www�cs�cornell�edu
Info
Projects
Ensemble
index�html�

�GHJV��� Erich Gamma� Richard Helm� Ralph Johnson� and John Vlissides�
Design Patterns� Elements of Reusable Object�Oriented Software�
Addison�Wesley� �����

�Hay��� Mark Hayden� The Ensemble System� Technical Report ��������
Cornell University� January �����

�LS��� B� Liskov and L� Shrira� Promises� Linguistic support for e�cient
asynchronous procedure calls in distributed systems� ACM SIGPLAN

Notices� ����	� July �����

�SC��� Douglas Schmidt and Charles Cranor� Half�Sync
Half�Async� An Ar�
chitectural Pattern for E�cient and Well�Structured Concurrent I
O�
Technical report� University of Illinois at Urbana�Champain� �����

��


