What is Java

« Javastarted as a programming language for
embedded systems (toasters, microwave ovens,
washers, etc.)

— needed to be portable
— hadtobereliable
« Theoriginal language was called oak (rumor hasit

that Gosling has alarge oak tree outside the
window of hisoffice).

3/14/01 Basic Java 1

Sun’s Slant

¢ According to Sun:

— Javaisasimple, object-oriented, distributed,
interpreted, robust, secure, architecture neutral,
portable, high-performance, multithreaded, and
dynamic language

« Javaisalot like C/C++ but there are a number of
important differences

3/14/01 BasicJava 2

How is Java Different

« Java differs from other popular languages:
— Itisinterpreted
— Architecture neutral
— Thereare no C/C++ style pointers, only references
— Garbage collected
— Comeswith a sophisticated classlibrary

— Includes support for concurrency, networking, and
graphics

3/14/01 Basic Java 3




Java Versions

« Javahas gone through 3 major revisions
- 10
« initial release
- 11
+ major modificationsin AWT
« inner classes
— 1.2 (or asSuncdlsit Java2)
+ Collection classes
* Swing
« Javadoc
- 13
» Lookslikean upgrade...

3/14/01 Basic Java

Spotless

¢ The Java Virtual Machine for PAm™ Devices

* Design for small appliances

— Java should help here by making the appliances
software "softer"

* God isto keep complete IVM: dynamic loading,
garbage collection, multithreading

¢ Allow for possible future use of Jini™

3/14/01 BasicJava

Java Environments

« There arelots of commercial Java programming
environments

— IBM’sVisual Age

— SUN's JavaWorkshop

— Visual 3+

— Semantic Café

— many others (most of which cost money)

* Sun provides the JDK (Java development Kit) for
free.

3/14/01 Basic Java 6




The JDK

¢ The JDK consists of the following:

— The Java devel opment tools, including the compiler,
debugger and the Java I nterpreter

— TheJavaclasslibraries organized as acollection of
packages.

— A number of demonstration programs

— Various supporting tools and components, including the
source code of the classesin thelibrary

¢ Get it from http://www.java.sun.com

3/14/01 Basic Java

Java Resources

* JavaHome Page

— http://www.java.sun.com (http://www javasoft.com)
¢ TheJavaTutorial

— http://www.java.sun.com/docs/books/tutorial
« Java Developer Connection

— http://devel oper.java.sun.com
¢ The Swing Connection

— http://java.sun.com/productsjfc/tsc

3/14/01 BasicJava

Other Resources

¢ RIT Course Pages

— http://www cs.rit.edu/~csl

— http://www cs.rit.edu/~cs2

— http://www cs.rit.edu/~cs3
« NT-EMACS

— http://www.cswashingtonedu/homes/voel ker/ntemacshtml
« JDE

— http:// sunsite.auc.dk/jde/

3/14/01 Basic Java




Applications and Applets

« Javaprograms comein two forms:

— Applications

— Applets
Applets typically are downloaded into a browser
and are run by the Java Virtual Machinethat is
part of the browser.

— Usually arerestricted asto what they can do

» Applications are standalone programs that can do
just about anything.

.

3/14/01 Basic Java 10

Basic Java Syntax

¢ The Javalanguage will be described by working
through its features:
— variabletypes and expressions
— selection and iteration
— classes
— exceptions

¢ Small sample programs will be provided to
illustrate how each feature is used.

3/14/01 BasicJava 1

Program Structure

« A program in Java consists of one or more class
definitions. One of these classes must define a
method main(), which is where the program starts
running

/1 A Java Hello Wrld Program

public class Hellowrld {
public static void main( String args[] ) {
Systemout.printin( "Hello Wrld" );
}
}

3/14/01 Basic Java 12




Comments

* Comments comein three forms:

/1 single line coments
/* multi
line
coment
*]
/** a
* Javadoc
* coment
*/
3/14/01 Basic Java 13
Javadoc

¢ A tool that comes with the JDK that produces
HTML-based documentation from Java Source
code.

« Within a Javadoc comment, various tags can
appear which allow additional information to be
processed.

« Each tag is marked by an @ symbol and should
start on anew line.

3/14/01 Basic Java 14

Javadoc Tags

@ut hor INam the author(s) of the code:

@uthor Paul Tymann
@uthor Paul Tynann, Jim Gosling

@eprecat ed | Indicates that the Tollowing method will be removed in future versons

‘@xCception | Information on exceptions thrown by a method

@aram Provide nformation about method and constructor parameters. The tag is followed by a

parameter name and a comment

@aram count nunber of el enents

@eturn Relum value for non-vord methods

@ee Provide cross reference to another class, interface, method, variable or URL
@ee java. | ang. | nt eger

@ince When a particular feature was included (i.e. since when it has been availzble)
@ince JOK 1.0

@ersion Version inf about the current revision of

3/14/01 BasicJava




Example

o
* Aclass that nanages a circle given the radius
* @ee java. | ang. Math
* @ersion 1.0
* @uthor Paul Tymann
!

public class Grele {

private doubl e radius;
* Constructor for a circle.

* @aram radius radius of the circle being created. Mst be
* positive and greater than 0.

“r
public Gircle( double radius ) {
this.radius = radius;

3/14/01 Basic Java 16

The Result

¢ Theresultisaset of HTML pages.
« The documentation that is produced is meant to be

part of the overall documentation that comes with
the JDK.

¢ Thel.1version of Javadoc did not support local
modifications to the Java documentation well.

« A much improved version of Javadoc isprovided
with Java2.

3/14/01 BasicJava 17

Primitive Types

« Javahastwo categories of types: primitivetypes
and reference types.
« The primitive types represent the basic, built-in
typesthat are part of the Javalanguage.
« Two basic categories:
— Boolean - bool ean
— Numeric
« Intergal -byte, short, int, long, char
* Floating point - f | oat, doubl e

3/14/01 Basic Java 18




Primitive Types
bool ean Hastwovaluest r ueand f al se,

byte 8-bit signed 2's complement integers, range: -128 to 127
short 16-hit signed 2's complement integers, range: -32768 to 32767

int 32-hit signed 2's complement integers, range: -2147483648 to
2147483647

| ong 64-bit signed 2's complement integers, range: -
9223372036854775808 to 9223372036854775807

char 16-hit unsigned values from 0 to 65535, representing Unicode
characters

f | oat Single precision, 32-bit format | EEE 754 floating-point val ues, range:
1.40239846e-45 to 3.40282347e+38

doubl e  Double precision, 64-bit format |EEE 754 floating-point values,
range: 4.9406564581246544e-324 to 1.79769313486231570e+308

There are special floating point values: ‘positive infinity’, ‘ negative
infinity’, and ‘not anumber’ (NaN).

Note: these types are platform independent

3/14/01 Basic Java 19

Unicode

* Anlnternational Standard that defines the
representation of characters from a wide range of
alphabets.

¢ Unicode stores characters as 16-bit values
providing 65,536 different characters.

¢ ASCII happensto be the first 127 charactersin the
Unicode standard.

« Javauses Unicode as opposed to ASCII.

3/14/01 Basic Java 20

Unicode Escapes

¢ Unicode escapes alow any character to be
represented regardless of the editor being used

« A Unicode escape stands for a character and is
represented using the\ u escape sequence
followed by the hexadecimal digits of the
character code

* Examples:
\u0343, \u2f4, \uabcd

3/14/01 Basic Java 21




Literals

Integer 0, 123, -456, 55665, ..
00, 0123, 0777, -045323, .
0x0, 0x125, -Oxffed, OXfff

Literals of typel ONg (64-bit) are denoted by appendingl or

|__to any integer literal.
Floating point |1. 2345, 1234.423, 0.1, -1.23, ...

By default floating point literals are of typedoubl e. If the
literal is suffixed with F or f it will be of type float.

Boolean true, false
Characters fa', ‘A, I,
‘\b, CVf', fAnt, ANt Nt AT, N
Strings “This is a string”, “Hello Wrld\n"
Null null
3/14/01 Basic Java 22
Automatic Type Conversion

« Javaprovidesavariety of automatic type
conversions.

» Thefollowing conversions are supported:
— Widening primitive conversions
« byteto short, int, long, float, or double
« short to int, long, float, or double
« int to long, float, or double
« long to float or double
« float to double

3/14/01 BasicJava 23

Automatic Type Conversions

— Widening Reference Conversions

« theseallow areference of asubclasstypeto betreated asa
reference of a superclasstype.

— String conversion
» whenthe‘+ (string concatenation) operator has one argument
of type of type String the other argument can be converted
from any other type to type String

* Conversions like these are performed during
assignment and parameter passing.

3/14/01 Basic Java 24




Identifiers

* Variables, methods, classes and interfaces all need
to be named.

¢ ldentifiers
— start with an alphabetic character
— can contain letters, digits, or “_"
— areunlimited in length

« Examples

Answer, total, last_total,

rel ativePosition, gridEl ement
Person, Place, Stack, Queue

3/14/01 Basic Java

Declaring Variables

¢ Thebasic syntax for declaring variablesis:

typenane identifier;

or

typenane identifier = expression;

¢ Itispossibleto declare two or more variables of
the same type in a single declaration statement.

3/14/01 BasicJava

Categories of Variables

« Therearetwo categories of variables:

— Variablesof primitive typewhich directly contain a
representation of avalue of aprimitive type.

— Variables of areference type which hold areferenceto
an object conforming to the named type or the value
nul I (whichisthenull reference).

¢ All variables must be declared and initialized
before being used.

3/14/01 Basic Java




Initialization

¢ Loca Variables

— must, either directly or indirectly, be explicitly
initialized before use

¢ Parameter Variables

— arealwaysinitialized to be acopy of the argument (note
that objects are passed by reference, so the object
referenceis copied, not the object itself)

¢ Class and Instance Variables
— defaultinitialization is possible

3/14/01 Basic Java 28
Type Value
byt e (byte)0
short (short)0
int 0
| ong ol
float 0. of
doubl e 0. 0d
char “\'u0000’ (thenull character)
bool ean false
reference types [null
3/14/01 Basic Java 29
public class varl {
public static void main( String args(] ) {
inti=1;
String s = “hello”;
intj;
/1 j cannot be used yet since it does not have a val ue
j =4
Systemout.printin( j );
float a=1.0f, b =20f, c=3.0f;
doubl e pi = 3.14;
Systemout. printin( pi );
Systemout.printin( s );
}
3/14/01 Basic Java 30

10



Operators

unary postfix . O + --

unary prefix T = @ = = |

creaionandcast new ( type )

multiplicative L%

additive ¥ e

shift << >> >>> (unsigned right shift)

relational < > >= <= jnstanceof

equality = 1=

and &

xor

o |

boolean and &

boolean or I

conditional 2

assignment = 4= .= *= [= O >>= <<=
>>>= &= M= |:

3/14/01 Basic Java 31

And and Or

¢ The&&, ||, &, and | operators operate differently
from C
— && and || can only be applied toboolean values

¢ What happens with & and | depends on the types
of the arguments:
— if used with integral values the operations are bitwise

— if used with boolean values the operations are boolean
and are NOT short-circuited

3/14/01 Basic Java 32

Statement

¢ The statement is the main building block from
which code sequences are constructed.

« Statements are executed in the order listed and are
always terminated by a semicolon.

expr ;
or
{ exprl; expr2; ..exprn; }
3/14/01 Basic Java 33

11



The if Statement

e Syntax:
if ( bool eanExpression ) statenent
or
if ( bool eanExpression )
stat enent

el se
st at ement

« Note you can layout code in any way you want.

3/14/01 Basic Java 34

The switch statement

e Syntax:

switch ( expression ) {
case char/byte/short/int constant : statenentSequence

aéf ault: statenent Sequence
¢ Asin C, break statements are needed to jumpout
of a switch statement.
» Thedefault caseisoptional.

3/14/01 BasicJava 35

Example

int z;
switch (i) {
case 1:
z = 1;
br eak;
case 2:
z = 2
case 3:
z = 3;
br eak;
defaul t:
z =0;

3/14/01 Basic Java 36

12



Thewhile Loop

e Syntax:

whil e ( bool eanExpression )
st at ement

3/14/01 Basic Java 37

The do Loop

e Syntax:

do
st at ement
whil e ( bool eanExpression );

3/14/01 BasicJava 38

The for Loop

e Syntax:
for ( initExpr; bool eanExpr; updateExpr )
st at enent

« Each of the expressionsis optional, the semicolons
arenot.

e Afor loopisbasicaly awhi | e loop with
initialization and updating thrown in.

3/14/01 Basic Java 39

13



Transfer Statements

¢ Thebr eak statement can occur anywhere within
asw tch, for, whil eordo statement and
causes execution to jump to the next statement.

« Thecont i nue statement can occur anywhere
withinaf or, whi | e or do statement and causes
execution to jump to the end of the loop body.

* Ther et ur n statement causes the execution of
the current method, with control returning to the
caller.

3/14/01 Basic Java 40

Objects

« Anobject isastructure that represents a state and
knows methods to manipulate it. The structure
components are called instance variables.

« Given aclass, one normally creates objects.

« Objects are created dynamically with operator new
which in turn calls a constructor method to
initializetheinstance variables.

« Methods mostly access the instance variables of
the recelver.

3/14/01 BasicJava a1

Java Classes

« The Java system comes with an extensive set of
classes from which you may create objects.
o Letsstart with afamiliar class St ri ng.

¢ Tofind out what you can do to Java stringsyou
need to refer to the documentation that comes with
the JDK

3/14/01 Basic Java 42

14



Namejava

/1 A sinple program that exercises some basic nethods
/1 in the String class. Note: Strings are constant

public class Name {

public static void main( String args[] ) {
String name;
int mdLoc;

name = "Paul";

name = name.concat( " Tymann" );

midLoc = name.indexf (" " );

name = name.substring( 0, mdLoc ) + " Thomas" +

name.substring( mdLoc );

System out.println( name );

for (int i=0; i<nane.length() & name.charAt (i)
Systemout. printin( name.charAt(i) ):

}

}
3/14/01 Basic Java 43
Reversejava
Il This programreverses a given string
public class Reverse {
public static void main( String args[] ) {
String orig = "Hello World";
String reverse = "";
for (int i=0; i<orig.length(); i++)
reverse = orig.charAt( i ) + reverse;
Systemout.println( reverse );
}
3/14/01 Basic Java 24
StringBuffer
¢ TheSt ri ng class provides string objects that
cannot be changed.
e TheStri ngBuf f er class provides mutable
string objects.
3/14/01 Basic Java 45

15



Reverse?

/1 Another way to reverse a string

public class Reverse2 {
public static void main( String args[] ) {

StringBuffer rev = new StringBuffer ( “Hello Wrld" );
char tnp;

for (int i=0,j=rev.length()-1; i<j; i++j--) {
tmp = rev.charAt (i );
rev. setCharAt (i, rev.charAt(j) );
rev. setCharAt(j, tnp );

}

Systemout. println( rev );

}

3/14/01 Basic Java

/1 Thi's program checks a given string to see if it is a palindrome

public class Palin {
public static void main( String args[] ) {

Stringorig = "monf, reverse = "

/1 Reverse it

for (int i=0; i<orig.length(); i++)
reverse = orig. charAt( i ) + reverse;
/1 Now check it ( note that orig == reverse does not work )

if (orig. equal sl gnoreCase (reverse))
System out. printin( "Palindrome" );

el se
Systemout. println( "Not a palindrome” );

3/14/01 BasicJava

Arrays

« Arrays are represented by objects but there isno
class that array objects areinstances of.

« Variables of array type are declared using bracket
([ notation:

typenane[] varnane;

or
typenane[] varname = arraylnitExpr;
or
typenanme varnane[];
or
typenane varnane[] = arraylnitExpr;
3/14/01 Basic Java 48

16



Arrays

¢ Multi-dimension arrays can be declared by
repeating pairs of brackets up to the required
dimension.

» Thelength instance variable holds the size or
length of the array:

String[] words = new String[100];
System out.printin( words.length );

int []1[] twoD = new int[10][20];

Systemout.println( twoD. length ); /1 gives 10
Systemout.println( twoD[O].length ); // gives 20

3/14/01 Basic Java 49

Array Initialization

¢ Itispossibleto directly initialize the values of the
array elements using an initializer list:

int[] n={1, 2 3 4 5};
int [1[] m={ {1, 2, 3, 4}, {4, 5 6, 7}};

int [J[] w={ {1, 2, 3}, { 4 5}

3/14/01 BasicJava 50

CmdLineEcho

/1 Echo the contents of the conmand line

public class OrdLi neEcho {
public static void main( String args[] ) {

for (int i=0; i<args.length; i++)
Systemout. println( args[i] );

3/14/01 Basic Java 51

17



Classes

¢ The class declaration introduces a new class.

¢ A class describes the structure and behavior of its
instance objectsin terms of instance variables and
methods.

¢ Like variables, classes may be declared at
different scopes. The scope of aclass directly
affects certain properties of the class.

« Wewill start with top-level classes.

3/14/01 Basic Java 52

Class Syntax

modifier cl ass identifier {
constructor Declarations
methodDeclarations
staticMember Declarations
instanceVariableDeclarations
staticVariableDeclarations

Note: Top-level classes must be stored in afile named identifier java

3/14/01 BasicJava 53

Class Modifiers

¢ Top-level classes can optionally be declared as:
— public
« apublicclassisglobally accessible. A single sourcefilecan
have only onepublic class or interface.

— abstract
« an abstract class can have no instance objects.
— final
« afina classcannot be subclassed.
¢ A class that does not have a modifier, can only be
accessed by classes in the same package.

3/14/01 Basic Java 54

18



Public, Private and Protected

* Any declaration can be preceded by :

— public
« adeclaration isaccessible by any class
— protected
« adeclaration isaccessible to any subclass, or to any classinthe
same package.
— private
« adeclaration is only accessible within the classin whichitis
declared.

« Default accessibility is package scope.

3/14/01 Basic Java 55

Instance Variables

« Instance variables form the state of an object.
¢ Aninstance variable can be declared as f i nal ,
meaning that it is a constant.

class Classl {
public String hello = “Hello";
public final String world = “Wrld";
protected int count = 0;
private float length = 2.345f;

}

3/14/01 BasicJava 56

Methods

¢ Class methods define the behavior of the object.

« A method nameis an identifier. Following the
method name is a parenthesized formal parameter
list, which may be empty (the parenthesis are still
required).

« Each parameter consists of atype namefollowed
by a parameter variable name.

3/14/01 Basic Java 57

19



Constructors

* A congtructor is a method that can be used to
control initialization.
« A congtructor is declared like a method:
— constructors have no return type
— the constructor name is the same asthe class
¢ A constructor with an empty parameter list is
known as adefault constructor.
If aclass does not define a constructor, the
compiler will automatically insert one.

3/14/01 Basic Java 58

ArraylntStack

public class ArraylntStack {
private int data[]; private int tos;

public ArraylntStack( int cap ) {
data = newint[ cap ]; tos = -1;

}

public void push( int newvalue) {
if ( tisFull() ) { tos++ datal tos ] = newvalue: }

}

publicint top() {
it ( lisEmpty() )
return data[ tos ];
el se
return 0;

}

public void pop() { if ( lisEnmpty() ) tos--: }

public bool ean i SEmpty() { return tos == -1; }
public bool ean isFull () { returntos == ( data.length - 1); }
}
3/14/01 Basic Java 59

e this isafina variable that holds areferenceto
the object inwhich it exists (i.e. this pointsto the
currentobject)

« Thetypeoft hi s isthereferencetype of the
object

« Itissometimes necessary to pass areferenceto the
current object as aparameter to another method.

3/14/01 Basic Java 60

20



StackNode

public class StackNode {
private Object data;
private StackNode next;

public StackNode( Object o) {
this( o, null );

}

public StackNode( Object data, StackNode n ) {
this.data = data;
next = n;

}

public StackNode getNext () { return next; }

public Object getData() { return data; }

3/14/01 Basic Java

LinkedStack

public class LinkedStack {
private StackNode tos = null;

public bool ean isEnpty() { return tos == null;
public boolean isFull () { return false; }
public void push( Cbject o) {

tos = new StackNode( o, tos);
}
public void pop() { tos = tos.getNext(); }

public Cbject top() { return tos. getData(); }

3/14/01 BasicJava

}

TestStack

public class testStack {

public static void main( String args[] ) {
int i;
Li nkedSt ack st ack=new Li nkedStack();

for (i=0; i<10; i++)
stack. push( new Integer( i ) );
while (!stack.isEmpty()) {

Systemout. println( stack.top() );
stack. pop();

3/14/01 Basic Java

21



Static or Class Variables

* A static variable belongs to aclass and is not part
of the state of individual instance objects.

« Only one copy of each static variable exists.

Class variables have several uses:

— they are global to the class and can be shared by all
objects of the class.
— class constants (usingf i nal )
» Static variables must be explicitly initiaized
(because no constructor can do it).

3/14/01 Basic Java 64

Elevator

public class Elevator {
private static int nextld = 0;

public final static int UP = 0;
public final static int DOMW = 1;

private int direction = UP;
private int nyld

public Elevator() { myld = nextld++ }
public int getid) { return myld; }
public int getDirection() { return direction; }

public void setDirection( int dir ) {
switch ( dir ) {

case UP:
case DOVN:
direction = dir;
128
3/14/01 Basic Java 65

TestElevator

public class TestEl evator {
public static void main( String args[] ) {
El evator a = new El evator();
El evator b = new El evator();
El evator ¢ = new El evator();

a setDirection( a.DOW ); Il access through an object
b.setDirection( Elevator. DOW ); // access through the class

System out. println(

"Elevator A 1d=" + a.getld() + ", Dir=" + a.getDirection() );

Systemout. println(

"El evator B: Id=" + b.getld() + ", Dir=" + b.getDirection() );

Systemout. println(

"El evator C: ld=" + c.getld() + ", Dir=" + c.getDirection() );

3/14/01 Basic Java 66

22



Static Methods

« Static methods generally follow the samerules as

methods:

— astatic method belongsto aclass not itsinstance
objects.

— astatic method can be called both directly and for an
object of the same class

— astatic method cannot access any instance variables or
methods (since it does not belong to an instance object)

— thi s cannot be used

3/14/01 Basic Java 67

Static Methods

¢ Thereisone special use of static methods in the
formofstati c nain.

* When aclass defines a public static method mai n,
it provides a starting point for execution of a
program using that class.

« Any class can have atatic mai n method.

« Static methods are generally used to provide
utility or helper methods. For examples see
java.l ang. Mat h.

3/14/01 BasicJava 68

Inheritance

« Inheritance provides amechanism for extending
an existing class to create a new class.

¢ Thenew class hasall the features of the old class
and adds its own features.

¢ Theclassthat inheritsis known as the subclass,
whilethe class that isinherited from is known as
the superclass.

3/14/01 Basic Java 69

23



Conformance

¢ A crucial consequence of inheritance isthe idea of
substitutability, at the programming language level
thisisimplemented as the idea of assignment
compatibility

« Thismakesit possible to assign areferenceto a
subclassto areference of the superclass.

¢ Thusitis possibleto let a subclass stand in for the
superclass.

3/14/01 Basic Java 70

Syntax

¢ A subclass inherits from a superclass using the
ext ends keyword

class subd assNane extends superd assNanme {
variabl e and met hod decl arations

« Inheritanceisapplicableto top-level classes,
nested top-level classes, member classes, loca
classes and anonymous classes

3/14/01 Basic Java 71

Inheritance

¢ A class can inherit from any classthat is not final.

* Objects of the subclass contain al the instance
variables and methods declared by the superclass.

« The accessibility rules are still enforced which
means a subclass cannot access the private parts of
the superclass.

* Subclassing can be repeated as many times as
desired. A class can have only one superclass, but
may have many subclasses.

3/14/01 Basic Java 72

24



Scope Rules

« Inheritance increases the number of scopes that
need to be searched (both static and instance
declarations are searched)

— check thelocal scope and any local scopes

— check the class scope

— check each superclass scopein turn up to the top of the
inheritance chain

« |If variableswith the sameidentifier are declared in
several scopes, the first one found is used.

3/14/01 Basic Java 73

Method Overloading

« Methods can be overloaded, meaning that two or
methods in the same class can have the same name
provided they have different parameter lists.

¢ Thereturn typefor al overloaded methods must
be the same.

« Operator overloading is not supported in Java.

3/14/01 BasicJava 74

Method Overriding

« A subclass can override an inherited method by
providing a new method declaration that has the
same name, the same number and types of
parameters and the same result type as the one
inherited.

* Method overriding relies on dynamic binding, so
the type of the object determines which method
gets called.

3/14/01 Basic Java 75

25



Abstract Classes

« An abstract classis a place holder for declaring
shared methods and variables for use by
subclasses.

« An abstract class cannot have instance objects and
S0 exists as a class that other classes can inherit
from.

« A concrete classisaclassthat is not abstract

3/14/01 Basic Java 76

Abstract Methods

« A method can be declared abstract so that it must
be overridden by subclasses.

* An abstract class does not have amethod body;
the declaration ends with a semi-colon not a
compound statement.

¢ A classdeclaring one or more abstract methods
must be declared as an abstract class

 Private and static methods cannot be abstract

3/14/01 BasicJava 77

Stack

abstract class Stack {
protected int count = 0;

public abstract void push( Cbject o );
public abstract void pop();

public abstract Cbject top();

public abstract boolean isFull ();

public bool ean isEnpty() {
return count==0;

}
}

3/14/01 Basic Java 78

26



ArrayStack

public class ArrayStack extends Stack {
private Object data[]:
private tos = -1;

public ArrayStack() { data = new Object[ 100 ]; }

public void push( Object o) {
it tisFull() ) |

tos++ datal tos] = o; count++;
}
}
public void pop() {
if ( tisEnpty() ) { tos--: count--; }

}

public Object top() { return data. lastElement(); }
public boolean isFull() {
return tos == ( data.length - 1);

3/14/01 Basic Java

LinkedStack

public class LinkedStack extends Stack {
private StackNode tos = null;

private static class StackNode {
private Object data;
private StackNode next, prev;

public StackNode( Object o) { this( o, null ); }
public StackNode( Object o, StackNode n ) {

data = o;

next = n;

}
public StackNode getNext() { return next; }
public Object getData() { return data; }

}

public void push( Object o) { tos = new StackNode( o, tos );

public void pop() { tos = tos.getNext();
public Object top() { returntos.getData(); }
public boolean isFull() { return false; }

public boolean isEmpty() { return tos == null; }}

3/14/01 Basic Java

}

PolyStack

public class PolyStack {
public static void main( String args[] ) {
Stack x = null;

if (args.length == 1)
if (args[0].equals( "ArrayStack® ) )
x = new ArrayStack():
else it ( args[0].equals( " LinkedStack" ) )
X = new LinkedStack() ;
else {
Systemout.printin( “Invalid command |ine argument"
System exit(1);
}

for (int i=0; i<10; i++) x.push( new Integer( i ) );

while (Ix.isEmpty()) {
Systemout.printin( (Integer)x.top() );

x. pop() ;
I

3/14/01 Basic Java

)i

27



Fina Methods

« A final instance method cannot be overridden (but
can still be overloaded).

« A final static method cannot be re-declared in a
sublcass.

« Fina methods prevent a method that has the same
name and parameter types from being declared in
asubclass.

* Thistakes into account both static and instance
variables.

3/14/01 Basic Java 82

Constructors and Inheritance

¢ The guarantee of proper initiaization must be
maintained in the presence of inheritance.

« Javaforces the constructors for each superclassto
be called and provides syntax for explicitly
controlling which constructors are called.

« Thekeyword super can be used to explicitly call
a superclass constructor
— super ( argunentlist ) ;

e super must be the first statement in a constructor

3/14/01 BasicJava 83

Methods Inherited from Class Object

¢ Class Object declares the following methods that
can be overwritten:
— public boolean equals( Object obj );
— public String toString();
— public final nativeint hashCode() ;
— protective native Object clone();
— protected void finalize();
— public final ClassgetClass()

3/14/01 Basic Java 84

28



Interfaces

« An interface declaration allows the specification
of areference type without providing an
implementation.

* A type can conform to another typeif it specifies
at least the same set of methods as the other type
(and possibly more).

* Thetwo types do not have to be related by
inheritance which gives more freedom as to which
types may conform to other types.

3/14/01 Basic Java 85

Syntax

¢ Aninterface is declared as shown below:

interfaceMbdifier interface identifier {
i nterfaceMet hodDecl arations;
interfaceVariabl eDecl arati ons;

« The optiona modifier allows an interface to be
declared public.

« Any variables declared are implicitly constants
and are also static

3/14/01 BasicJava 86

Implements

¢ Theimplements keyword allows a class to
implement (or conform to) one or more interfaces.

* A class can implement any number of interfaces
(and also extend aclass at the same time).

¢ Any variables defined in the interface become
static variables of the class.

* A method declared in a public interface must be
public in an implementing class.

3/14/01 Basic Java 87

29



