
1

3/14/01 Basic Java 1

What is Java

• Java started as a programming language for
embedded systems (toasters, microwave ovens,
washers, etc.)
– needed to be portable

– had to be reliable

• The original language was called oak (rumor has it
that Gosling has a large oak tree outside the
window of his office).

3/14/01 Basic Java 2

Sun’s Slant

• According to Sun:
– Java is a simple, object-oriented, distributed,

interpreted, robust, secure, architecture neutral,
portable, high-performance, multithreaded, and
dynamic language

• Java is a lot like C/C++ but there are a number of
important differences

3/14/01 Basic Java 3

How is Java Different

• Java differs from other popular languages:
– It is interpreted

– Architecture neutral
– There are no C/C++ style pointers, only references

– Garbage collected
– Comes with a sophisticated class library

– Includes support for concurrency, networking, and
graphics

2

3/14/01 Basic Java 4

Java Versions

• Java has gone through 3 major revisions
– 1.0

• initial release

– 1.1
• major modifications in AWT
• inner classes

– 1.2 (or as Sun calls it Java2)
• Collection classes
• Swing
• Javadoc

– 1.3
• Looks like an upgrade…

3/14/01 Basic Java 5

Spotless

• The Java Virtual Machine for Palm™ Devices

• Design for small appliances

– Java should help here by making the appliances
software "softer"

• Goal is to keep complete JVM: dynamic loading,
garbage collection, multithreading

• Allow for possible future use of Jini™

3/14/01 Basic Java 6

Java Environments

• There are lots of commercial Java programming
environments
– IBM’s Visual Age

– SUN’s Java Workshop
– Visual J++

– Semantic Café
– many others (most of which cost money)

• Sun provides the JDK (Java development Kit) for
free.

3

3/14/01 Basic Java 7

The JDK

• The JDK consists of the following:
– The Java development tools, including the compiler,

debugger and the Java Interpreter

– The Java class libraries organized as a collection of
packages.

– A number of demonstration programs
– Various supporting tools and components, including the

source code of the classes in the library

• Get it from http://www.java.sun.com

3/14/01 Basic Java 8

Java Resources

• Java Home Page
– http://www.java.sun.com (http://www.javasoft .com)

• The Java Tutorial
– http://www.java.sun.com/docs/books/tutorial

• Java Developer Connection
– http://developer.java.sun.com

• The Swing Connection
– http://java.sun.com/products/jfc/tsc

3/14/01 Basic Java 9

Other Resources

• RIT Course Pages
– http://www.cs.rit.edu/~cs1

– http://www.cs.rit.edu/~cs2
– http://www.cs.rit.edu/~cs3

• NT-EMACS
– http://www.cs.washington.edu/homes/voelker/ntemacs.html

• JDE
– http:// sunsite.auc.dk/jde/

4

3/14/01 Basic Java 10

Applications and Applets

• Java programs come in two forms:
– Applications

– Applets

• Applets typically are downloaded into a browser
and are run by the Java Virtual Machine that is
part of the browser.
– Usually are restricted as to what they can do

• Applications are standalone programs that can do
just about anything.

3/14/01 Basic Java 11

Basic Java Syntax

• The Java language will be described by working
through its features:
– variable types and expressions

– selection and iteration
– classes

– exceptions

• Small sample programs will be provided to
illustrate how each feature is used.

3/14/01 Basic Java 12

Program Structure

• A program in Java consists of one or more class
definitions. One of these classes must define a
method main(), which is where the program starts
running

// A Java Hello World Program

public class HelloWorld {
public static void main(String args[]) {

System.out.println("Hello World");
}

}

5

3/14/01 Basic Java 13

Comments

• Comments come in three forms:

// single line comments

/* multi
line
comment

*/

/** a
* Javadoc
* comment
*/

3/14/01 Basic Java 14

Javadoc

• A tool that comes with the JDK that produces
HTML-based documentation from Java Source
code.

• Within a Javadoc comment, various tags can
appear which allow additional information to be
processed.

• Each tag is marked by an @ symbol and should
start on a new line.

3/14/01 Basic Java 15

Javadoc Tags
Tag Description
@author Name the author(s) of the code:

@author Paul Tymann
@author Paul Tymann, Jim Gosling

@deprecated Indicates that the following method will be removed in future versions
@exception Information on exceptions thrown by a method
@param Provide information about method and constructor parameters. The tag is followed by a

parameter name and a comment

@param count number of elements

@return Return value for non-void methods
@see Provide cross reference to another class, interface, method, variable or URL.

@see java.lang.Integer

@since When a particular feature was included (i.e. since when it has been available)

@since JDK 1.0

@version Version information about the current revision of the code being documentated

6

3/14/01 Basic Java 16

Example
/**
* A class that manages a circle given the radius
* @see java.lang.Math
* @version 1.0
* @author Paul Tymann
*/

public class Circle {

private double radius;

/**
* Constructor for a circle.
*
* @param radius radius of the circle being created. Must be
* positive and greater than 0.
*
*/

public Circle(double radius) {
this.radius = radius;

}
}

3/14/01 Basic Java 17

The Result

• The result is a set of HTML pages.
• The documentation that is produced is meant to be

part of the overall documentation that comes with
the JDK.

• The 1.1 version of Javadoc did not support local
modifications to the Java documentation well.

• A much improved version of Javadoc is provided
with Java2.

3/14/01 Basic Java 18

Primitive Types

• Java has two categories of types: primitive types
and reference types.

• The primitive types represent the basic, built-in
types that are part of the Java language.

• Two basic categories:
– Boolean - boolean
– Numeric

• Intergal -byte, short, int, long, char
• Floating point - float, double

7

3/14/01 Basic Java 19

Primitive Types
Type Description
boolean Has two values, true and false.
byte 8-bit signed 2’s complement integers, range: -128 to 127
short 16-bit signed 2’s complement integers, range: -32768 to 32767
int 32-bit signed 2’s complement integers, range: -2147483648 to

2147483647
long 64-bit signed 2’s complement integers, range: -

9223372036854775808 to 9223372036854775807
char 16-bit unsigned values from 0 to 65535, representing Unicode

characters
float Single precision, 32-bit format IEEE 754 floating-point values, range:

1.40239846e-45 to 3.40282347e+38
double Double precision, 64-bit format IEEE 754 floating-point values,

range: 4.9406564581246544e-324 to 1.79769313486231570e+308

There are special floating point values: ‘positive infinity’, ‘negative
infinity’, and ‘not a number’ (NaN).

Note: these types are platform independent

3/14/01 Basic Java 20

Unicode

• An International Standard that defines the
representation of characters from a wide range of
alphabets.

• Unicode stores characters as 16-bit values
providing 65,536 different characters.

• ASCII happens to be the first 127 characters in the
Unicode standard.

• Java uses Unicode as opposed to ASCII.

3/14/01 Basic Java 21

Unicode Escapes

• Unicode escapes allow any character to be
represented regardless of the editor being used

• A Unicode escape stands for a character and is
represented using the \u escape sequence
followed by the hexadecimal digits of the
character code

• Examples:

\u0343, \u2f4, \uabcd

8

3/14/01 Basic Java 22

Literals
Type Examples
Integer 0, 123, -456, 55665, …

00, 0123, 0777, -045323, …
0x0, 0x125, -0xffed, 0xfff

Literals of type long (64-bit) are denoted by appending L o r
l to any integer literal.

Floating point 1.2345, 1234.423, 0.1, -1.23, …

By default floating point literals are of type double. If the
literal is suffixed with F or f it will be of type float.

Boolean true, false
Characters ‘a’, ‘A’, ‘!’, …

‘\b’, ‘\f’, ‘\n’, ‘\r’, ‘\t’, ‘\\’, ‘\’’
Strings “This is a string”, “Hello World\n”
Null null

3/14/01 Basic Java 23

Automatic Type Conversion

• Java provides a variety of automatic type
conversions.

• The following conversions are supported:
– Widening primitive conversions

• byte to short, int, long, float, or double
• short to int, long, float, or double
• int to long, float, or double
• long to float or double
• float to double

3/14/01 Basic Java 24

Automatic Type Conversions

– Widening Reference Conversions
• these allow a reference of a subclass type to be treated as a

reference of a superclass type.

– String conversion
• when the ‘+’ (string concatenation) operator has one argument

of type of type String the other argument can be converted
from any other type to type String

• Conversions like these are performed during
assignment and parameter passing.

9

3/14/01 Basic Java 25

Identifiers

• Variables, methods, classes and interfaces all need
to be named.

• Identifiers
– start with an alphabetic character
– can contain letters, digits, or “_”

– are unlimited in length

• Examples
Answer, total, last_total, relativePosition, gridElement
Person, Place, Stack, Queue

3/14/01 Basic Java 26

Declaring Variables

• The basic syntax for declaring variables is:

• It is possible to declare two or more variables of
the same type in a single declaration statement.

typename identifier;

or

typename identifier = expression;

3/14/01 Basic Java 27

Categories of Variables

• There are two categories of variables:
– Variables of primitive type which directly contain a

representation of a value of a primitive type.

– Variables of a reference type which hold a reference to
an object conforming to the named type or the value
null (which is the null reference).

• All variables must be declared and initialized
before being used.

10

3/14/01 Basic Java 28

Initialization

• Local Variables
– must, either directly or indirectly, be explicitly

initialized before use

• Parameter Variables
– are always initialized to be a copy of the argument (note

that objects are passed by reference, so the object
reference is copied, not the object itself)

• Class and Instance Variables
– default initialization is possible

3/14/01 Basic Java 29

Default Initialization

Type Value
byte (byte)0
short (short)0
int 0
long 0l
float 0.0f
double 0.0d
char ‘\u0000’ (the null character)
boolean false
reference types null

3/14/01 Basic Java 30

Example
public class var1 {
public static void main(String args[]) {
int i=1;
String s = “hello”;
int j;

// j cannot be used yet since it does not have a value

j = 4;

System.out.println(j);

float a = 1.0f, b = 2.0f, c = 3.0f;

double pi = 3.14;

System.out.println(pi);

System.out.println(s);
}

}

11

3/14/01 Basic Java 31

Operators
Description Syntax
unary postfix [] . () ++ --
unary prefix ++ -- + - ~ !
creation and cast new (type)
multiplicative * / %
additive + -
shift << >> >>> (unsigned right shift)
relational < > >= <= instanceof
equality == !=
and &
xor ^
or |
boolean and &&
boolean or ||
conditional ?:
assignment = += -= *= /= %= >>= <<=

>>>= &= ^= |=

3/14/01 Basic Java 32

And and Or

• The &&, ||, &, and | operators operate differently
from C
– && and || can only be applied to boolean values

• What happens with & and | depends on the types
of the arguments:
– if used with integral values the operations are bitwise
– if used with boolean values the operations are boolean

and are NOT short-circuited

3/14/01 Basic Java 33

Statement

• The statement is the main building block from
which code sequences are constructed.

• Statements are executed in the order listed and are
always terminated by a semicolon.

expr;

or

{ expr1; expr2; … exprn; }

12

3/14/01 Basic Java 34

The if Statement

• Syntax:

• Note you can layout code in any way you want.

if (booleanExpression) statement

or

if (booleanExpression)
statement

else
statement

3/14/01 Basic Java 35

The switch statement

• Syntax:

• As in C, break statements are needed to jumpout
of a switch statement.

• The default case is optional.

switch (expression) {
case char/byte/short/int constant : statementSequence
…
default: statementSequence

3/14/01 Basic Java 36

Example

int z;
switch (i) {

case 1:
z = 1;
break;

case 2:
z = 2;

case 3:
z = 3;
break;

default:
z = 0;

}

13

3/14/01 Basic Java 37

The while Loop

• Syntax:

while (booleanExpression)
statement

3/14/01 Basic Java 38

The do Loop

• Syntax:

do
statement

while (booleanExpression);

3/14/01 Basic Java 39

The for Loop

• Syntax:

• Each of the expressions is optional, the semicolons
are not.

• A for loop is basically a while loop with
initialization and updating thrown in.

for (initExpr; booleanExpr; updateExpr)
statement

14

3/14/01 Basic Java 40

Transfer Statements

• The break statement can occur anywhere within
a switch, for, while or do statement and
causes execution to jump to the next statement.

• The continue statement can occur anywhere
within a for, while or do statement and causes
execution to jump to the end of the loop body.

• The return statement causes the execution of
the current method, with control returning to the
caller.

3/14/01 Basic Java 41

Objects

• An object is a structure that represents a state and
knows methods to manipulate it. The structure
components are called instance variables.

• Given a class, one normally creates objects.
• Objects are created dynamically with operator new

which in turn calls a constructor method to
initialize the instance variables.

• Methods mostly access the instance variables of
the receiver.

3/14/01 Basic Java 42

Java Classes

• The Java system comes with an extensive set of
classes from which you may create objects.

• Lets start with a familiar class String.
• To find out what you can do to Java strings you

need to refer to the documentation that comes with
the JDK

15

3/14/01 Basic Java 43

Name.java
// A simple program that exercises some basic methods
// in the String class. Note: Strings are constant.

public class Name {
public static void main(String args[]) {
String name;
int midLoc;

name = "Paul";
name = name.concat(" Tymann");

midLoc = name.indexOf (" ");
name = name.substring (0, midLoc) + " Thomas" +

name.substring(midLoc);

System.out.println(name);

for (int i=0; i<name.length() && name.charAt (i) != ' '; i++)
System.out. println(name.charAt(i));

}
}

3/14/01 Basic Java 44

Reverse.java

// This program reverses a given string

public class Reverse {
public static void main(String args[]) {

String orig = "Hello World";
String reverse = "";

for (int i=0; i<orig.length(); i++)
reverse = orig.charAt(i) + reverse;

System.out.println(reverse);
}

}

3/14/01 Basic Java 45

StringBuffer

• The String class provides string objects that
cannot be changed.

• The StringBuffer class provides mutable
string objects.

16

3/14/01 Basic Java 46

Reverse2
// Another way to reverse a string

public class Reverse2 {
public static void main(String args[]) {

StringBuffer rev = new StringBuffer (“Hello World”);
char tmp;

for (int i=0,j=rev.length()-1; i<j; i++,j--) {
tmp = rev.charAt(i);
rev.setCharAt(i, rev.charAt(j));
rev.setCharAt(j, tmp);

}

System.out.println(rev);
}

}

3/14/01 Basic Java 47

Palin
// This program checks a given string to see if it is a palindro me

public class Palin {
public static void main(String args[]) {
String orig = "mom”, reverse = "";

// Reverse it

for (int i=0; i<orig.length(); i++)
reverse = orig. charAt(i) + reverse;

// Now check it (note that orig == reverse does not work)

if (orig. equalsIgnoreCase (reverse))
System.out. println("Palindrome");

else
System.out. println("Not a palindrome");

}
}

3/14/01 Basic Java 48

Arrays

• Arrays are represented by objects but there is no
class that array objects are instances of.

• Variables of array type are declared using bracket
([]) notation:

typename[] varname;
or

typename[] varname = arrayInitExpr;
or

typename varname[];
or

typename varname[] = arrayInitExpr;

17

3/14/01 Basic Java 49

Arrays

• Multi-dimension arrays can be declared by
repeating pairs of brackets up to the required
dimension.

• The length instance variable holds the size or
length of the array:

String[] words = new String[100];
System.out.println(words.length);

int [][] twoD = new int[10][20];
System.out.println(twoD.length); // gives 10
System.out.println(twoD[0].length); // gives 20

3/14/01 Basic Java 50

Array Initialization

• It is possible to directly initialize the values of the
array elements using an initializer list:

int[] n = { 1, 2, 3, 4, 5 };

int [][] m = { {1, 2, 3, 4}, {4, 5, 6, 7}};

int [][] w = { {1, 2, 3}, { 4, 5}};

3/14/01 Basic Java 51

CmdLineEcho

// Echo the contents of the command line

public class CmdLineEcho {
public static void main(String args[]) {

for (int i=0; i<args.length; i++)
System.out.println(args[i]);

}
}

18

3/14/01 Basic Java 52

Classes

• The class declaration introduces a new class.
• A class describes the structure and behavior of its

instance objects in terms of instance variables and
methods.

• Like variables, classes may be declared at
different scopes. The scope of a class directly
affects certain properties of the class.

• We will start with top-level classes.

3/14/01 Basic Java 53

Class Syntax

modifier class identifier {
constructorDeclarations
methodDeclarations
staticMemberDeclarations
instanceVariableDeclarations
staticVariableDeclarations

}

Note: Top-level classes must be stored in a file named identifier.java

3/14/01 Basic Java 54

Class Modifiers

• Top-level classes can optionally be declared as:
– public

• a public class is globally accessible. A single source file can
have only one public class or interface.

– abstract
• an abstract class can have no instance objects.

– final
• a final class cannot be subclassed.

• A class that does not have a modifier, can only be
accessed by classes in the same package.

19

3/14/01 Basic Java 55

Public, Private and Protected

• Any declaration can be preceded by :
– public

• a declaration is accessible by any class

– protected
• a declaration is accessible to any subclass, or to any class in the

same package.

– private
• a declaration is only accessible within the class in which it is

declared.

• Default accessibility is package scope.

3/14/01 Basic Java 56

Instance Variables

• Instance variables form the state of an object.
• An instance variable can be declared as final,

meaning that it is a constant.

class Class1 {
public String hello = “Hello”;
public final String world = “World”;
protected int count = 0;
private float length = 2.345f;

}

3/14/01 Basic Java 57

Methods

• Class methods define the behavior of the object.
• A method name is an identifier. Following the

method name is a parenthesized formal parameter
list, which may be empty (the parenthesis are still
required).

• Each parameter consists of a type name followed
by a parameter variable name.

20

3/14/01 Basic Java 58

Constructors

• A constructor is a method that can be used to
control initialization.

• A constructor is declared like a method:
– constructors have no return type
– the constructor name is the same as the class

• A constructor with an empty parameter list is
known as a default constructor.

• If a class does not define a constructor, the
compiler will automatically insert one.

3/14/01 Basic Java 59

ArrayIntStack
public class ArrayIntStack {

private int data[]; private int tos ;

public ArrayIntStack(int cap) {
data = new int[cap]; tos = -1;

}

public void push(int newValue) {
if (!isFull()) { tos++; data[tos] = newValue ; }

}

public int top() {
if (!isEmpty ())

return data[tos];
else

return 0;
}

public void pop() { if (!isEmpty()) tos--; }
public boolean isEmpty() { return tos == -1; }
public boolean isFull () { return tos == (data.length - 1); }

}

3/14/01 Basic Java 60

this

• this is a final variable that holds a reference to
the object in which it exists (i.e. this points to the
currentobject)

• The type of this is the reference type of the
object

• It is sometimes necessary to pass a reference to the
current object as a parameter to another method.

21

3/14/01 Basic Java 61

StackNode
public class StackNode {

private Object data;
private StackNode next;

public StackNode(Object o) {
this(o, null);

}

public StackNode(Object data, StackNode n) {
this.data = data;
next = n;

}

public StackNode getNext () { return next; }

public Object getData() { return data; }
}

3/14/01 Basic Java 62

LinkedStack
public class LinkedStack {
private StackNode tos = null;

public boolean isEmpty() { return tos == null; }

public boolean isFull() { return false; }

public void push(Object o) {
tos = new StackNode(o, tos);

}

public void pop() { tos = tos.getNext(); }

public Object top() { return tos.getData(); }
}

3/14/01 Basic Java 63

TestStack

public class testStack {

public static void main(String args[]) {
int i;
LinkedStack stack=new LinkedStack();

for (i=0; i<10; i++)
stack.push(new Integer(i));

while (!stack.isEmpty()) {
System.out.println(stack.top());
stack.pop();

}
}

}

22

3/14/01 Basic Java 64

Static or Class Variables

• A static variable belongs to a class and is not part
of the state of individual instance objects.

• Only one copy of each static variable exists.
• Class variables have several uses:

– they are global to the class and can be shared by all
objects of the class.

– class constants (using final)

• Static variables must be explicitly initialized
(because no constructor can do it).

3/14/01 Basic Java 65

Elevator
public class Elevator {
private static int nextId = 0;

public final static int UP = 0;
public final static int DOWN = 1;

private int direction = UP;
private int myId;

public Elevator() { myId = nextId++; }
public int getId() { return myId; }
public int getDirection () { return direction; }

public void setDirection(int dir) {
switch (dir) {

case UP:
case DOWN:
direction = dir;

}}}

3/14/01 Basic Java 66

TestElevator
public class TestElevator {

public static void main(String args[]) {
Elevator a = new Elevator();
Elevator b = new Elevator();
Elevator c = new Elevator();

a.setDirection(a.DOWN); // access through an object
b.setDirection(Elevator.DOWN); // access through the class

System.out.println(
"Elevator A: Id=" + a.getId() + ", Dir=" + a.getDirection());

System.out.println(
"Elevator B: Id=" + b.getId() + ", Dir=" + b.getDirection());

System.out.println(
"Elevator C: Id=" + c.getId() + ", Dir=" + c.getDirection());

}
}

23

3/14/01 Basic Java 67

Static Methods

• Static methods generally follow the same rules as
methods:
– a static method belongs to a class not its instance

objects.

– a static method can be called both directly and for an
object of the same class

– a static method cannot access any instance variables or
methods (since it does not belong to an instance object)

– this cannot be used

3/14/01 Basic Java 68

Static Methods

• There is one special use of static methods in the
form of static main.

• When a class defines a public static method main,
it provides a starting point for execution of a
program using that class.

• Any class can have a static mainmethod.
• Static methods are generally used to provide

utility or helper methods. For examples see
java.lang.Math.

3/14/01 Basic Java 69

Inheritance

• Inheritance provides a mechanism for extending
an existing class to create a new class.

• The new class has all the features of the old class
and adds its own features.

• The class that inherits is known as the subclass,
while the class that is inherited from is known as
the superclass.

24

3/14/01 Basic Java 70

Conformance

• A crucial consequence of inheritance is the idea of
substitutability, at the programming language level
this is implemented as the idea of assignment
compatibility

• This makes it possible to assign a reference to a
subclass to a reference of the superclass.

• Thus it is possible to let a subclass stand in for the
superclass.

3/14/01 Basic Java 71

Syntax

• A subclass inherits from a superclass using the
extends keyword

• Inheritance is applicable to top-level classes,
nested top-level classes, member classes, local
classes and anonymous classes

class subClassName extends superClassName {
variable and method declarations

}

3/14/01 Basic Java 72

Inheritance

• A class can inherit from any class that is not final.
• Objects of the subclass contain all the instance

variables and methods declared by the superclass.
• The accessibility rules are still enforced which

means a subclass cannot access the private parts of
the superclass.

• Subclassing can be repeated as many times as
desired. A class can have only one superclass, but
may have many subclasses.

25

3/14/01 Basic Java 73

Scope Rules

• Inheritance increases the number of scopes that
need to be searched (both static and instance
declarations are searched)
– check the local scope and any local scopes

– check the class scope
– check each superclass scope in turn up to the top of the

inheritance chain

• If variables with the same identifier are declared in
several scopes, the first one found is used.

3/14/01 Basic Java 74

Method Overloading

• Methods can be overloaded , meaning that two or
methods in the same class can have the same name
provided they have different parameter lists.

• The return type for all overloaded methods must
be the same.

• Operator overloading is not supported in Java.

3/14/01 Basic Java 75

Method Overriding

• A subclass can override an inherited method by
providing a new method declaration that has the
same name, the same number and types of
parameters and the same result type as the one
inherited.

• Method overriding relies on dynamic binding, so
the type of the object determines which method
gets called.

26

3/14/01 Basic Java 76

Abstract Classes

• An abstract class is a place holder for declaring
shared methods and variables for use by
subclasses.

• An abstract class cannot have instance objects and
so exists as a class that other classes can inherit
from.

• A concrete class is a class that is not abstract

3/14/01 Basic Java 77

Abstract Methods

• A method can be declared abstract so that it must
be overridden by subclasses.

• An abstract class does not have a method body;
the declaration ends with a semi-colon not a
compound statement.

• A class declaring one or more abstract methods
must be declared as an abstract class

• Private and static methods cannot be abstract

3/14/01 Basic Java 78

Stack
abstract class Stack {

protected int count = 0;

public abstract void push(Object o);
public abstract void pop();
public abstract Object top();
public abstract boolean isFull();

public boolean isEmpty() {
return count==0;

}
}

27

3/14/01 Basic Java 79

ArrayStack
public class ArrayStack extends Stack {
private Object data[];
private tos = - 1;

public ArrayStack() { data = new Object[100]; }

public void push(Object o) {
if (!isFull()) {

tos ++; data[tos] = o; count++;
}

}

public void pop() {
if (!isEmpty ()) { tos-- ; count --; }

}

public Object top() { return data. lastElement(); }
public boolean isFull() {
return tos == (data.length – 1);

}
}

3/14/01 Basic Java 80

LinkedStack
public class LinkedStack extends Stack {
private StackNode tos = null;

private static class StackNode {
private Object data;
private StackNode next, prev;

public StackNode(Object o) { this(o, null); }
public StackNode(Object o, StackNode n) {

data = o;
next = n;

}
public StackNode getNext() { return next; }
public Object getData () { return data; }

}

public void push(Object o) { tos = new StackNode (o, tos); }
public void pop() { tos = tos.getNext(); }
public Object top() { return tos.getData(); }
public boolean isFull() { return false; }
public boolean isEmpty() { return tos == null; }}

3/14/01 Basic Java 81

PolyStack
public class PolyStack {
public static void main(String args[]) {
Stack x = null;

if (args .length == 1) {
if (args[0].equals("ArrayStack"))
x = new ArrayStack();

else if (args[0].equals(" LinkedStack "))
x = new LinkedStack();

else {
System.out.println("Invalid command line argument");
System.exit(1);

}

for (int i=0; i<10; i++) x.push(new Integer(i));

while (!x.isEmpty()) {
System.out.println((Integer)x.top());
x.pop();

}}}}

28

3/14/01 Basic Java 82

Final Methods

• A final instance method cannot be overridden (but
can still be overloaded).

• A final static method cannot be re-declared in a
sublcass.

• Final methods prevent a method that has the same
name and parameter types from being declared in
a subclass.

• This takes into account both static and instance
variables.

3/14/01 Basic Java 83

Constructors and Inheritance

• The guarantee of proper initialization must be
maintained in the presence of inheritance.

• Java forces the constructors for each superclass to
be called and provides syntax for explicitly
controlling which constructors are called.

• The keyword super can be used to explicitly call
a superclass constructor
– super (argumentList) ;

• supermust be the first statement in a constructor

3/14/01 Basic Java 84

Methods Inherited from Class Object

• Class Object declares the following methods that
can be overwritten:
– public boolean equals(Object obj);

– public String toString();
– public final native int hashCode() ;

– protective native Object clone();
– protected void finalize();

– public final Class getClass ()

29

3/14/01 Basic Java 85

Interfaces

• An interface declaration allows the specification
of a reference type without providing an
implementation.

• A type can conform to another type if it specifies
at least the same set of methods as the other type
(and possibly more).

• The two types do not have to be related by
inheritance which gives more freedom as to which
types may conform to other types.

3/14/01 Basic Java 86

Syntax

• An interface is declared as shown below:

• The optional modifier allows an interface to be
declared public.

• Any variables declared are implicitly constants
and are also static

interfaceModifier interface identifier {
interfaceMethodDeclarations;
interfaceVariableDeclarations;

}

3/14/01 Basic Java 87

Implements

• The implements keyword allows a class to
implement (or conform to) one or more interfaces.

• A class can implement any number of interfaces
(and also extend a class at the same time).

• Any variables defined in the interface become
static variables of the class.

• A method declared in a public interface must be
public in an implementing class.

