
1

3/14/01 Packages & Inner Classes 1

Packages

• A package allows classes to be grouped together 
into a single unit which also acts as a scope.

• A class indicates that it is part of a package using 
the package statement (must be the first 
statement in a source file)
– package packageName ;

• Packages are imported using an import statement
– importpackageName.className ;
– importpackageName.* ;

3/14/01 Packages & Inner Classes 2

Packages

• It is also possible to specify the name of a zip file 
in the CLASSPATH as well as directories 
containing class files.

• Any class from another package must be imported.  
for all Java classes this must be done explicitly 
with the exception of java.lang .

• If a class is not defined as part of a package, then 
it is considered to be part of the unnamed default 
package.

3/14/01 Packages & Inner Classes 3

Mapping Packages to Files

• Package names map to directory names.  Each 
directory contains all the .class files for a given 
package
– cs1.examples.stack would map to 
cs1/examples/stack

– the relative pathname is then appended to each entry in 
the CLASSPATH variable to create a full pathname

• Sun’s recommended naming convention:
– edu.rit.cs.ptt.classes.cs1.examples



2

3/14/01 Packages & Inner Classes 4

Inner Classes

• Inner, or Nested, classes are standard 
classes declared within the scope of a 
standard top-level class.

• There are different kinds of inner class
– nested top-level class
– member class
– local class
– anonymous class

3/14/01 Packages & Inner Classes 5

Nested Top-Level Classes

• Nested top-level classes are declared static within 
a top-level class (sort of like a class member).

• They follow the same rules as standard classes
– private static classes cannot be seen outside the 

enclosing class
– public staticallows the class to be seen outside

class outer {
private static class NestedTopLevel {
normal class stuff

}
normal class stuff

}

3/14/01 Packages & Inner Classes 6

LinkedStack2
public class LinkedStack2 {
private StackNode tos = null;

private static class StackNode {
private Object data; private StackNode next, prev;

public StackNode( Object o ) { this( o, null ); }
public StackNode( Object o, StackNode n ) {

data = o; next = n;
}

public StackNode getNext() { return next; }
public Object getData () { return data; }

}

public boolean isEmpty() { return tos == null; }
public boolean isFull() { return false; }
public void push( Object o ) { tos = new StackNode ( o, tos ); }
public void pop() { tos = tos.getNext(); }
public Object top() { return tos.getData(); }

}



3

3/14/01 Packages & Inner Classes 7

Member Classes

• A member class is a nested top-level class that is 
not declared static.

• This means the member class has a this reference 
which refers to the enclosing class object.

• Member classes cannot declare static variables, 
methods or nested top-level classes.

• Member objects are used to create data structures 
that need to know about the object they are 
contained in.

3/14/01 Packages & Inner Classes 8

Class5
class Class5 {

private class Member {
public void test() {
i = i + 10;
System.out.println( i );
System.out.println( s );
}

}

public void test() {
Member n = new Member();
n.test();

}

private int i = 10;
private String “Hello”;

}

3/14/01 Packages & Inner Classes 9

this Revisited

• To support member classes several extra kinds of 
expressions are provided
– x = this.dataMember is valid only if dataMember is 

an instance variable declared by the member class, not 
if dataMember belongs to the enclosing class.

– x = EnclosingClass.this.dataMember allows 
access to dataMember that belongs to the enclosing 
class.

• Inner classes can be nested to any depth and the 
this mechanism can be used with nesting.



4

3/14/01 Packages & Inner Classes 10

this and Member Classes
public class EnclosingClass {

private int i,j;

private class MemberClass {
private int i;  public int j;

public void aMethod( int i ) {
int a = i;                      // Assign param to a
int b = this.i;                 // Assign member's i to b
int c = EnclosingClass.this.i;  // Assign top-level's i to c
int d = j;                      // Assign top-level's j to d

}  }

public void aMethod() {
MemberClass mem = new MemberClass();
mem.aMethod( 10 );
System.out.println( mem.i + mem.j );  // is this a bug?

}}

3/14/01 Packages & Inner Classes 11

new Revisited

• Member class objects can only be created if they 
have access to an enclosing class object.

• This happens by default if the member class object 
is created by an instance method belonging to its 
enclosing class.

• Otherwise it is possible to specify an enclosing 
class object using the new operator as follows
– MemberClass b = 

anEnclosingClass.new MemberClass();

3/14/01 Packages & Inner Classes 12

Local Classes

• A local class is a class declared within the scope 
of a compound statement, like a local variable.

• A local class is a member class, but cannot include 
static variables, methods or classes.  Additionally 
they cannot be declared public, protected, 
private or static.

• A local class has the ability to access final
variables and parameters in the enclosing scope.



5

3/14/01 Packages & Inner Classes 13

Local Class Example
public class EnclosingClass {
String name = "Local class example";

public void aMethod ( final int h, int w ) {
int j = 20; final int k = 30;

class LocalClass {
public void aMethod () {
System.out.println( h );
// System.out.println ( w ); ERROR w is not final
// System.out.println ( j ); ERROR j is not final
System.out.println( k );
// System.out.println ( i ); ERROR i is not declared yet
System.out.println( name); // normal member access 

} }

LocalClass l = new LocalClass (); l.aMethod();
final int i = 10; }

public static void main() {
EnclosingClass c = new EnclosingClass(); c.aMethod ( 10, 50 ); }}

3/14/01 Packages & Inner Classes 14

Anonymous Classes

• An anonymous class is a local class that does not 
have a name.

• An anonymous class allows an object to be created 
using an expression that combines object creation 
with the declaration of the class.

• This avoids naming a class, at the cost of only 
ever being able to create one instance of that 
anonymous class.

• This is handy in the AWT.

3/14/01 Packages & Inner Classes 15

Anonymous Class Syntax

• An anonymous class is defined as part of a new
expression and must be a subclass or implement an 
interface

• The class body can define methods but cannot 
define any constructors.

• The restrictions imposed on local classes also 
apply

new className( argumentList ) { classBody }
new interfaceName() { classBody }



6

3/14/01 Packages & Inner Classes 16

Using Anonymous Classes
import java.awt.*; import java.awt.event.*;import javax.swing.*;

public class MainProg {
JFrame win;

public MainProg( String title ) {
win = new JFrame( title );

win.addWindowListener(
new WindowAdapter() {

public void windowClosing( WindowEvent e ) {
System.exit( 0 );

}});
}

public static void main( String args[] ) {
MainProg x = new MainProg( “Simple Example” );

}}


