
1

Java Networking 1

Java Net Classes

The superclass of all classes that represent a
communications link between an application and a URL.

URLConnection

A pointer to a "resource" on the World Wide Web.URL

This class implements client sockets (also called just
"sockets").

Socket

The multicast datagram socket class is useful for sending
and receiving IP multicast packets.

MulticastSocket

This class represents an Internet Protocol (IP) address.InetAddress

This class represents a datagram packet.DatagramPacket

This class represents a socket for sending and receiving
datagram packets.

DatagramSocket

This class implements server sockets.ServerSocket

DescriptionClass

Java Networking 2

Class InetAddress
public boolean equals(Object obj);

public byte[] getAddress();
public static InetAddress[] getAllByName(String host);
public static InetAddress getByName(String host);
public String getHostName();
public static InetAddress getLocalHost();

public int hashCode();
public String toString();

This class represents an Internet Protocol (IP) address.

Applications should use the methods getLocalHost(), getByName(), or
getAllByName() to create a new InetAddress instance.

Java Networking 3

HostInfo.java
import java.net.*;

public class HostInfo {
public static void main(String args[]) {

InetAddress ipAddr;

try {
ipAddr = InetAddress.getLocalHost();
System.out.println("This is " + ipAddr);

}
catch (UnknownHostException ex) {
System.out.println("Unknown host");

}
}

2

Java Networking 4

Resolver.java
import java.net.*;

public class Resolver {
public static void main(String args[]) {

InetAddress ipAddr;

try {
ipAddr = InetAddress.getByName(args[0]);
System.out.print("IP address = " + ipAddr + "\n ");

}
catch (UnknownHostException ex){
System.out.println("Unknown host ");

}
}

}

Java Networking 5

Daytime Service

Most UNIX servers run the daytime service on TCP port 13.

cobalt> telnet kiev.cs.rit.edu 13
Trying 129.21.38.145...
Connected to kiev.
Escape character is '^]'.
Fri Feb 6 08:33:44 1998
Connection closed by foreign host.

It is easy to write a Java daytime client. All the program needs
to do is to establish a TCP connection on port 13 of a remote host.

A TCP style connection is made using the Socket class.

Java Networking 6

Class Socket
// Constructors (partial list)
public Socket()
public Socket(InetAddress address, int port);
public Socket(String host, int port);

// Methods (partial list)
public void close();

public InetAddress getInetAddress();
public int getLocalPort();

public InputStream getInputStream();
public OutputStream getOutputStream();

public int getPort();
public String toString();

3

Java Networking 7

Class Socket

• This class implements client sockets (also called just sockets). A socket
is a end point for communication between two machines.

• The actual work of the socket is performed by an instance of the
SocketImpl class.

• It is possible to modify some TCP parameters:
– SO_LINGER
– SO_TIMEOUT
– TCP_NODELAY

– Enable/disable TCP_NODELAY (disable/enable Nagle's algorithm).

Java Networking 8

DayTimeClient.java
import java.net.*; import java.io.*; import java.util.*;

public class DayTimeClient {
static int dayTimePort = 13;

public static void main(String args[]) {
try {
Socket sock = new Socket(args[0], dayTimePort);
BufferedReader din = new BufferedReader(

new InputStreamReader(sock.getInputStream()));
String rTime = din.readLine();
System.out.println(rTime);
sock.close();

}
catch (exception e) {}

}
}

Java Networking 9

A Java Daytime Server

• It is easy to create a daytime server in Java (the only real problem is
that your Java server will not be able to use port 13).

• The server version of the program will use a ServerSocket to
communicate with a client.

• A ServerSocket will open a TCP port and wait for a connection.
• Once a request is detected, a new port will be created, and the

connection will be established between the client's source port and this
new port.

• Most servers listen for requests on a particular port, and then service
that request on a different port.

• This makes it easy for the server to accept and service requestsat the
same time.

4

Java Networking 10

Class ServerSocket
// Constructors (partial list)

public ServerSocket(int port);
public ServerSocket(int port, int count);

// Methods (partial list)

public Socket accept();
public void close();

public InetAddress getInetAddress();
public int getLocalPort();

public String toString();

Java Networking 11

Class ServerSocket

• A ServerSocket waits for requests to come in over the network. It
performs some operation based on that request, and then possibly
returns a result to the requester.

• The actual work of the ServerSocket is performed by an instance of
the SocketImpl class.

• The abstract class SocketImpl is a common superclass of all classes
that actually implement sockets. It is used to create both client and
server sockets.

• A plain socket implements the SocketImpl methods exactly as

described, without attempting to go through a firewall or proxy.

Java Networking 12

DayTimeServer
import java.net.*; import java.io.*; import java.util.*;

public class DayTimeServer {
public static void main(String argv[]) {

try {
Date today = new Date();
InetAddress localHost = InetAddress.getLocalHost();
ServerSocket listen = new ServerSocket(0);
System.out.println("Listening on port: "+listen.getLocalPort());

for(;;) {
Socket clnt = listen.accept();
System.out.println(clnt.toString());
PrintWriter out = new PrintWriter(clnt.getOutputStream(), true);
out.println(today);
clnt.close();

}
} catch(Exception e) {}}}

5

Java Networking 13

DayTimeServer in Action
The output from the daytime server looks like this:

kiev> java DayTimeServer
Listening on port: 36109
Socket[addr=cobalt/129.21.37.176,port=32875,localport=36109]
Socket[addr=localhost/127.0.0.1,port=36112, localport=36109]

The client output looks like this:

cobalt> telnet kiev 36109
Trying 129.21.38.145...
Connected to kiev.
Escape character is '^]'.
Fri Feb 06 09:53:00 EST 1998
Connection closed by foreign host.

Java Networking 14

Multi-Threaded Servers

• It is quite easy, and natural in Java, to make a server multi-threaded.
• In a multi-threaded server a new thread is created to handle each

request.
• Clearly for a server such as the daytime server this is not necessary,

but for an FTP server this is almost required.
• The code for the multi-threaded version of the server consists of a new

class called Connection.

• An instance of this class handles the clients request.

Java Networking 15

Connection.java
import java.net.*; import java.io.*; import java.util.*;

class Connection extends Thread {
protected Socket clnt;
public Connection(Socket sock) {

clnt = sock;
this.start();

}

public void run() {
Date today = new Date();
try {
PrintWriter out = new PrintWriter(clnt.getOutputStream(), true);
out.println(today);
client.close();

} catch (IOException e) {}}}

6

Java Networking 16

TDayTimeServer.java
import java.net.*; import java.io.*; import java.util.*;

public class TDayTimeServer {
public static void main(String argv[]) {

try {
InetAddress localHost = InetAddress.getLocalHost();
ServerSocket listen = new ServerSocket(0);
System.out.println("Listening on: "+listen.getLocalPort());

for(;;) {
Socket clnt = listen.accept();
System.out.println(clnt.toString());
Connection c = new Connection(client);

}
}
catch(Exception e) { System.out.println("Server terminated"); }

}
}

Java Networking 17

UDP Based Applications

• UDP provides an unreliable packet based delivery service. An
application that uses UDP must deal with the errors that can arise
during communication.

• The basic unit of transfer is called a Datagram. Datagrams are small,
fixed-length messages.

• Datagram based services do have some advantages:
– Speed
– Message-oriented service.

Java Networking 18

Datagrams

• Datagram packets are used to implement a connectionless, packet
based, delivery service.

• Each message is routed from one machine to another based solely on
information contained within that packet.

• Multiple packets sent from one machine to another might be route d
differently, and might arrive in any order.

• Packets may be lost or duplicated during transit.
• The class DatagramPacket represents a datagram in Java.

7

Java Networking 19

Class DatagramPacket

//Constructors
public DatagramPacket(byte ibuf[], int ilength);
public DatagramPacket(
byte ibuf[], int ilength, InetAddress iaddr, int iport);

// Methods
public synchronized InetAddress getAddress();
public synchronized int getPort();
public synchornized byte[] getData();
int getLength();

void setAddress(InetAddress iaddr);
void setPort(int iport);
void setData(byte ibuf[]);
void setLength(int ilength);

Java Networking 20

Class DatagramSocket

• This class represents a socket for sending and receiving datagram
packets.

• Addressing information for outgoing packets is contained in the packet
header.

• A socket that is used to read incoming packets must be bound to an
address (sockets that are used for sending must be bound as well, but
in most cases it is done automatically).

• There is no special datagram server socket class.
• Since packets can be lost, the ability to set timeouts is important.

Java Networking 21

Class DatagramSocket
// Constructors
DatagramSocket()
DatagramSocket(int port)
DatagramSocket(int port, InetAddress iaddr)

// Methods
void close()
InetAddress getLocalAddress()
int getLocalPort()
int getSoTimeout()
void receive(DatagramPacket p)
void send(DatagramPacket p)
setSoTimeout(int timeout)

8

Java Networking 22

Echo Services

• A common network service is an echo server
• An echo server simply sends packets back to the sender
• A client creates a packet, sends it to the server, and waits fora

response.
• Echo services can be used to test network connectivity and

performance.
• There are typically different levels of echo services. Each provided by

a different layer in the protocol stack.

Java Networking 23

UDPEchoClient.java
import java.net.*; import java.io .*; import java.util.*;

public class UDPEchoClient {
static int echoPort = 7; static int msgLen = 16; static int timeOut=1000;

public static void main(String argv[]) {
try {

DatagramSocket sock = new DatagramSocket();
DatagramPacket pak;
byte msg[] = new byte[msgLen];

InetAddress echoHost = InetAddress .getByName(argv[0]);
pak = new DatagramPacket(msg,msgLen,echoHost,echoPort) ;

sock.send(pak);
sock.setSoTimeout(timeOut);
sock.receive(pak);

}
catch (InterruptedIOException e) {System.out.println ("Timeout");}
catch (Exception e) {}

}}

