
1

3/14/01 Streams 1

Streams

• Java provides many stream classes that let you
work with data in the forms that you usually use
rather than at the low, byte level.

• These are implemented in the abstract classes
InputStream and Outputstream.

• The methods in these classes provide the ability to
do simple, byte oriented operations.

3/14/01 Streams 2

Streams

• To receive information, a program opens a
stream and reads the information:

• A program can send information by opening
a stream to a destination and writes the
information:

3/14/01 Streams 3

Using Streams

• No matter where the information is coming from
or going to and no matter what type of data is
being read or written, the algorithms for reading
and writing data is pretty much always the same

Reading
open a stream
while more information

read information
close the stream

Writing
open a stream
while more information

write information
close the stream

2

3/14/01 Streams 4

java.io.*

• The java.io package contains a collection of
stream classes that support reading/writing from/to
streams

• Streams are divided into two class hierarchies
based on the type of data on which they operate.

3/14/01 Streams 5

InputStream Classes

InputStream

ByteArray
InputStream

File
InputStream

Filter
InputStream

Piped
InputStream

Sequence
InputStream

StringBuffer
InputStream

Object
InputStream

Buffered
InputStream

Checked
InputStream

Inflator
InputStream

PushBack
InputStream

Data
InputStream

ProgressMonitor
InputStream

Digest
InputStream

GZip
InputStream

Zip
InputStream

3/14/01 Streams 6

Data Sink Streams
Sink Type Character Streams Byte Streams

CharArrayReader
CharArrayWriter

ByteArrayInputStream
ByteArrayOutputStreamMemory StringReader

StringWriter
Pipe PipedReader

PipedWriter
PipedInputStream
PipedOutputStream

File FileReader
FileWriter

FileInputStream
FileOutputStream

3

3/14/01 Streams 7

Data Processing Streams
Process Character Streams Byte Streams

Buffering BufferedReader
BufferedWriter

BufferedInputStream
BufferedOutputStream

Filtering FilterReader,
FilterWriter

FilterInputStream,
FilterOutputStream

Converting between
bytes and characters

InputStreamReader
OutputStreamReader

Concatenation SequenceInputStream
Object Serialization ObjectInputStream,

ObjectOutputStream
Data Conversion DataInputStream,

DataOutputStream
Counting LineNumberReader LineNumberInputStream
Peeking Ahead PushbackReader PushbackInputStream
Printing PrintWriter PrintStream

3/14/01 Streams 8

Streams and Files

• Data files are handled using two abstractions:
– the basic file abstraction is provided by the library class
File . This encapsulates all the details of what a file is
and how it is named.

– The stream abstraction provides a way of reading and
writing data to and from a file.

• Reader streams deal with text input and are
subclasses of Reader, writer streams perform
text output and are subclasses of Writer.

3/14/01 Streams 9

BufferedReader

• A BufferedReader reads text from a
character-input stream, buffering characters so as
to provide for the efficient reading of characters,
arrays, and lines.

• The buffer size may be specified, or the default
size may be used.

• A BufferedReader is usually wrapped around
any Readerwhose read() operations may be
costly.

4

3/14/01 Streams 10

FileEcho
import java.io.*;

public class FileEcho {
public static void main(String args[]) {
int ch;

if (args.length>0) {
BufferedReader in = null;

try {
in = new BufferedReader(new FileReader(args[0]));

while ((ch = in.read()) != -1) {
System.out.print((char)ch);

}
}
catch (FileNotFoundException e) {
System.out.println("File not found");

}
catch(IOException e) {
System.out.println("Read error");
System.exit(1);

}}}}

3/14/01 Streams 11

InputEcho
import java.io.*;

public class InputEcho {
public static void main(String args[]) {
// Set things up to read from the keyboard

BufferedReader
keyboard = new BufferedReader(new InputStreamReader(System.in));

// Read stuff form input and dump to output

try {
String inString;

while ((inString = keyboard.readLine()) != null) {
System.out.println(inString);

}
} catch (IOException e) {

System.err.println("InputEcho: I/O error");
System.exit(1);

}
}

}

3/14/01 Streams 12

ReadNums
import java.util.*; import java.io.*;

public class ReadNums {
public static void main(String args[]) {
// Make sure the number of arguments is correct

if (args.length != 1) {
System.err.println("Usage: ReadNums sourceFile");
System.exit(1); }

// Initialize src since the assignment is done inside a try block

BufferedReader src = null;

// Attempt to open the file for reading

try {
src = new BufferedReader(new FileReader(args[0]));

}
catch (FileNotFoundException e) {
System.err.println("ReadNums: Unable to open source file");
System.exit(1); }

5

3/14/01 Streams 13

ReadNums (continued)
// Read the numbers a line at a time from the source file

Vector data = new Vector();

try {
String line;

while ((line = src.readLine()) != null) {
try {
int num = Integer.parseInt(line);
data.addElement(new Integer(num));

}
catch (NumberFormatException e) {} }

src.close();
}
catch (IOException e) {
System.err.println("ReadNums: " + e.getMessage());
System.exit(1); }

// Print out the results
for (int i=0; i<data.size(); i++)
System.out.println(data.elementAt(i)); }}

3/14/01 Streams 14

InputStreamReader

• An InputStreamReader is a bridge from
byte streams to character streams: it reads bytes
and translates them into characters according to a
specified character encoding.

• Each invocation of one of an
InputStreamReader'sread()methods may
cause one or more bytes to be read from the
underlying byte-input stream.

3/14/01 Streams 15

PrintWriter

• A PrintWriter prints formatted
representations of objects to a text-output stream.

• Flushing does not occur until the flush()
method is invoked. It is possible to enable
automatic flushing, which causes a flush to take
place after any println() method is invoked.
The output of a newline character does not cause a
flush.

• Methods in this class never throw I/O exceptions.

6

3/14/01 Streams 16

Building a Simple Expression
Evaluator

• Consider building an expression evaluator for the
following:
– identifier number ;

– identifier ;

• The code to do this follows. It uses the following
classes:
– InputStreamReader
– StreamTokenizer
– HashTable

3/14/01 Streams 17

ExprEval
import java.io.*;
import java.util.*;

public class ExprEval {
public static void main(String args[]) {

StreamTokenizer lex =
new StreamTokenizer(new InputStreamReader(System.in));

final int WANT_WORD = 0;
final int WANT_NUM = 1;
final int WANT_SEMI = 2;

int curState = WANT_WORD;
String curId = null;

Hashtable symTbl = new Hashtable();

lex.ordinaryChar('-'); // '-' is treated normally
lex.lowerCaseMode(true); // make case insensitive

3/14/01 Streams 18

ExprEval
try {

while (lex .nextToken() != StreamTokenizer .TT_EOF) {
switch (lex. ttype) {

case lex.TT_WORD:
if (curState == WANT_WORD) {

curId = lex .sval; curState = WANT_NUM;
}
else

curState = WANT_SEMI;
break;

case lex.TT_NUMBER:
if (curState == WANT_NUM)

symTbl.put(curId, new Integer((int)lex.nval));
curState = WANT_SEMI; break;

case ';':
if (curState == WANT_NUM)

System.out. println(symTbl .get(curId));
curState = WANT_WORD; break;

default:
curState = WANT_SEMI;

}}} catch(Exception e) { System.out.println("I/O Error"); }}}

