
1

3/14/01 Swing 1

The Abstract Windowing Toolkit

• Since Java was first released, its user interface
facilities have been a significant weakness
– The Abstract Windowing Toolkit (AWT) was part of

the JDK form the beginning, but it really was not
sufficient to support a complex user interface

• JDK 1.1 fixed a number of problems, and most
notably, it introduced a new event model. It did
not make any major additions to the basic
components

3/14/01 Swing 2

Java Foundation Classes

• In April 1997, JavaSoft announced the Java
Foundation Classes (JFC).
– a major part of the JFC is a new set of user

interface components called Swing.

AWT Swing Accessibility Java
2D

Drag
And
Drop

3/14/01 Swing 3

Swing

• The Swing classes are used to build graphic user
interfaces
– Swing is built on top of the core 1.1 and 1.2 AWT

libraries

• Swing makes 3 major improvements on the AWT
– does not rely on the platform’s native components
– it supports “ Pluggable Look-and-Feel” or PLAF

– it is based on the Model -View-Controller (MVC)
design pattern

2

3/14/01 Swing 4

GUI Packages

• AWT
– java.awt

– java.awt.color
– java.awt.datatransfer

– java.awt.event
– java.awt.font

– java.awt.geom
– java.awt.image
– ...

• Swing
– javax.accessibility
– javax.swing
– javax.swing.colorchooser
– javax.swing.event
– javax.swing.filechooser
– javax.swing.plaf
– javax.swing.table
– javax.swing.text.html
– javax.swing.tree
– ...

3/14/01 Swing 5

Components

• A graphical user interface consists of different
graphic Component objects which are combined
into a hierarchy using Container objects.

• Component class
– An abstract class for GUI components such as menus,

buttons, labels, lists, etc.

• Container
– An abstract class that extends Component. Classes

derived from Container, most notably Panel, Applet,
Window, Dialog, Frame, can contain multiple
components.

3/14/01 Swing 6

Weighing Components

• Sun make a distinction between lightweightand
heavyweight components
– Lightweight components are not dependent on

native peers to render themselves. They are
coded in Java.

– Heavyweight components are rendered by the
host operating system. They are resources
managed by the underlying window manager.

3

3/14/01 Swing 7

Heavyweight Components

• Heavyweight components were unwieldy for two
reasons
– Equivalent components on different platforms do not

necessarily act alike.

– The look and feel of each component was tied to the
host operating system

• Almost all Swing components are lightweight
except
– JApplet, JFrame, JDialog, and JWindow

3/14/01 Swing 8

Additional Swing Features

• Swing also provides
– A wide variety of components (tables, trees, sliders,

progress bars, internal frame, …)

– Swing components can have tooltips placed over them.
– Arbitrary keyboard events can be bound to components.

– Additional debugging support.
– Support for parsing and displaying HTML based

information.

3/14/01 Swing 9

Applets versus Applications

• Using Swing it is possible to create two different
types of GUI programs
– Standalone applications

• Programs that are started from the command line
• Code resides on the machine on which they are run

– Applets
• Programs run inside a web browser
• Code is downloaded from a web server
• JVM is contained inside the web browser
• For security purposes Applets are normally prevented from

doing certain things (for example opening files)

• For now we will write standalone applications

4

3/14/01 Swing 10

JFrame win = new JFrame(“title”);

JFrames

• A JFrame is a Window with all of the
adornments added.

• A JFrame provides the basic building
block for screen-oriented applications.

3/14/01 Swing 11

Creating a JFrame
import javax.swing.*;

public class SwingFrame {
public static void main(String args[]) {

JFrame win = new JFrame("My First GUI Program");

win.show();
}

} // SwingFrame

3/14/01 Swing 12

JFrame

• Sizing a Frame
– You can specify the size

• Height and width given in pixels
• The size of a pixel will vary based on the resolution

of the device on which the frame is rendered

– The method, pack(), will set the size of the
frame automatically based on the size of the
components contained in the content pane

• Note that pack does not look at the title bar

5

3/14/01 Swing 13

Creating a JFrame
import javax.swing.*;

public class SwingFrame {
public static void main(String args[]) {

JFrame win = new JFrame("My First GUI Program");

win.setSize(250, 150);
win.show();

}
} // SwingFrame

3/14/01 Swing 14

JFrame

• JFrames have several panes:

• The content pane is where the components will be placed
• The entire collection of panes is called the RootPane

Glass pane

Layered pane

Menu bar

Content pane

3/14/01 Swing 15

Swing Components

• JComponent
– JComboBox, JLabel, JList , JMenuBar, JPanel,

JPopupMenu, JScrollBar, JScrollPane, JTable,
JTree, JInternalFrame, JOptionPane,
JProgressBar, JRootPane, JSeparator, JSlider,
JSplitPane, JTabbedPane, JToolBar, JToolTip,
Jviewport , JColorChooser, JTextComponent,
…

6

3/14/01 Swing 16

lbl = new JLabel(”text", JLabel.RIGHT) ;

JLabels

• JLabels are components that you can put
text into.

• When creating a label you can specify the
initial value and the alignment you wish to
use within the label.

• You can use getText() and
setText() to get and change the value of
the label.

3/14/01 Swing 17

Hello World
import javax.swing.*;

public class SwingFrame {
public static void main(String args[]) {

JFrame win = new JFrame("My First GUI Program");

JLabel label = new JLabel("Hello World");

win.getContentPane().add(label);

win.pack();
win.show();

}
} // SwingFrame

3/14/01 Swing 18

JButtons

• JButton extends Component , displays
a string and delivers anActionEvent for
each mouse click.

• Normally buttons are displayed with a
border

• In addition to text, JButtons can also
display iconsbutton = new JButton(”text“) ;

7

3/14/01 Swing 19

Buttons
import javax.swing.*;

public class SwingFrame {
public static void main(String args[]) {

JFrame win = new JFrame("My First GUI Program");

JButton button = new JButton("Click Me!!");

win.getContentPane().add(button);

win.pack();
win.show();

}
} // SwingFrame

3/14/01 Swing 20

Layout Manager

• Layout Manager
– An interface that defines methods for

positioning and sizing objects within a
container. Java defines several default
implementations of LayoutManager.

• Geometrical placement in a Container is
controlled by a LayoutManager object

3/14/01 Swing 21

Components, Containers, and
Layout Managers

• Containers may contain components (which
means containers can contain containers!!).

• All containers come equipped with a layout
manager which positions and shapes (lays
out) the container's components.

• Much of the action in the AWT occurs
between components, containers, and their
layout managers.

8

3/14/01 Swing 22

Layout Managers

• Layouts allow you to format components on the
screen in a platform independent way

• The standard JDK provides five classes that
implement the LayoutManager interface:
– FlowLayout
– GridLayout
– BorderLayout
– CardLayout
– GridBagLayout

• Layout managers are defined in the AWT package

3/14/01 Swing 23

JPanel p = new JPanel() ;
p.setLayout(new FlowLayout());

Changing the Layout

• To change the layout used in a container you first
need to create the layout.

• Then the setLayout() method is invoked on the
container is used to use the new layout.

• The layout manager should be established before
any components are added to the container

3/14/01 Swing 24

FlowLayout

• FlowLayout is the default layout for the
JPanel class.

• When you add components to the screen, they
flow left to right (centered) based on the order
added and the width of the screen.

• Very similar to word wrap and full justification on
a word processor.

• If the screen is resized, the components' flow will
change based on the new width and height

9

3/14/01 Swing 25

Flow Layout
import javax.swing.*;
import java.awt.*;

public class SwingFrame {
public static void main(String args[]) {

JFrame win = new JFrame("My First GUI Program");

win.getContentPane().setLayout(new FlowLayout());

for (int i = 0; i < 10; i++)
win.getContentPane().add(

new JButton(String.valueOf(i)));

win.pack();
win.show();

}
} // SwingFrame

3/14/01 Swing 26

FlowLayout

3/14/01 Swing 27

GridLayout

• The GridLayout arranges components in rows and
columns.
– If the number of rows is specified, the number of

columns will be set to the number of components
divided by the rows

– If the number of columns is specified, the number of
rows will be set to the number of components divided
by the columns

– Specifying the number of columns affects the layout
only when the number of rows is set to zero.

• The order in which you add things is relevant.

10

3/14/01 Swing 28

GridLayout

gridLayout (2, 4)

gridLayout (0, 4) gridLayout (4, 4) gridLayout (10, 10)

3/14/01 Swing 29

BorderLayout

• BorderLayout provides 5 areas to hold
components. These are named after the four
different borders of the screen, North, South, East,
West, and Center.

• When a Component is added to the layout, you
must specify which area to place it in. The order in
which components is not important.

• The center area will always be resized to be as
large as possible

3/14/01 Swing 30

BorderLayout
import javax.swing.*;
import java.awt.*;

public class SwingFrame {
public static void main(String args[]) {

JFrame win = new JFrame("My First GUI Program");
Container content = win.getContentPane();

content.setLayout(new BorderLayout());
content.add("North", new JButton("North"));
content.add("South", new JButton("South"));
content.add("East", new JButton("East"));
content.add("West", new JButton("West"));
content.add("South", new JButton("South"));
content.add("Center", new JButton("Center"));

win.pack(); win.show();
}

} // SwingFrame

11

3/14/01 Swing 31

BorderLayout

3/14/01 Swing 32

Containers

• A JFrame is not the only type of container that
you can use in Swing

• The subclasses of Container are:
– JPanel
– JWindow
– JApplet

• Window is subclassed as follows:
– JDialog
– JFrame

3/14/01 Swing 33

A Simple 4 Function Calculator

12

3/14/01 Swing 34

Swing Components

JFrame
with BorderLayout

JButton

JLabel

JPanel
with GridLayout

3/14/01 Swing 35

CalcGui.java
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class CalcGui implements {
// Labels for the buttons
private static final String labels = "789X456/123 -0C=+";

private static final int NUMROWS = 4;
private static final int NUMCOLS = 4;

private JLabel display; // The display

public CalcGui(String name) {
// A Frame for the calculator

JFrame win = new JFrame(name);

3/14/01 Swing 36

CalcGui.java
// Create the button panel

JPanel buttons = new JPanel();
buttons.setLayout(new GridLayout(NUMROWS, NUMCOLS));

JButton b;

for (int i = 0 ; i < labels.length() ; i++) {
b = new JButton(labels.substring(i, i + 1));
buttons.add(b);

}

// Create the display

display = new JLabel("0", JLabel.RIGHT)

13

3/14/01 Swing 37

CalcGui.java
// "Assemble" the calculator

Container content = win.getContentPane();

content.setLayout(new BorderLayout());

content.add("North", display);
content.add("Center", buttons);

// Display it and let the user run with it :-)

win.pack();
win.show();

}

3/14/01 Swing 38

Anonymous Classes

• An anonymous class is a local class that does not
have a name.

• An anonymous class allows an object to be created
using an expression that combines object creation
with the declaration of the class.

• This avoids naming a class, at the cost of only
ever being able to create one instance of that
anonymous class.

• This is handy in the AWT.

3/14/01 Swing 39

Anonymous Class Syntax

• An anonymous class is defined as part of a new
expression and must be a subclass or implement an
interface

• The class body can define methods but cannot
define any constructors.

• The restrictions imposed on local classes also
apply

new className(argumentList) { classBody }
new interfaceName() { classBody }

14

3/14/01 Swing 40

Using Anonymous Classes
public class Dog {

private String breed; private String name;

public Dog(String theBreed, String theName) {
breed = theBreed; name = theName;

}

public String getBreed() { return breed; }
public String getName() { return name; }

public int compareTo(Object o) throws ClassCastException {
Dog other = (Dog)o;
int retVal = breed.compareTo(other.getBreed());
if (retVal == 0)

retVal = name.compareTo(other.getName());
return retVal;

}
} // Dog

3/14/01 Swing 41

Using Anonymous Classes
public void PrintDogsByName(List dogs) {

List sorted = dogs;

Collections.sort(sorted,
new Comparator () {

public int compare(Object o1, Object o2) {
Dog d1 = (Dog)o1;
Dog d2 = (Dog)o2;

return d1.getName().compareTo(d2.getName());
}

);

Iterator i = sorted.iterator();
while (i.hasNext())

System.out.println(i.next());
}

3/14/01 Swing 42

The Job of a Window Manager

15

3/14/01 Swing 43

Event Driven Programming

• Programs respond to events that are generated
outside the control of the program
– User types a key
– The left mouse button is pressed
– A CD is removed from the CD drive

• When an event occurs, it is handled by an event
handler

• Event driven programming involves writing the
handlers and arranging for the handler to be
notified when certain events occur

3/14/01 Swing 44

Event Handling

• Events are represented by objects that gives
information about the event and identifies the
event source
– Event sources are typically components, but other kinds

of objects can also be event sources

• A listener is an object that wants to be notified
when a particular event occurs
– An event source can have multiple listeners registered

on it
– A single listener can register with multiple event

sources

• In order for an object to be notified when a
particular event occurs, the object

3/14/01 Swing 45

Swing Listeners

ListSelectionListenerA table of list selection changes

FocusListenerA component gets the keyboard focus
ComponentListenerA component becomes visible

MouseMotionListenerUser moves the move over a component

MouseListenerUser presses a mouse button while the
cursor is over a component

WindowListenerUsers closes a frame (main window)

ActionListenerUser clicks a button, presses return while
typing in a text filed, or chooses a menu
item

Listener TypeAction

16

3/14/01 Swing 46

Window Closing

• A very common event directed towards a window
is a close event
– The default behavior is to simply hide the JFrame

when the user closes the window

• Normally we would want the program to terminate
when the user closes the main window

• Two steps required to accomplish this
– Write an event handler for the close event that will

terminate the program
– Register the handler with the appropriate event source

3/14/01 Swing 47

WindowListener

• The WindowListener interface
– void windowActivated(WindowEvent e) ;
– void windowClosed(WindowEvent e) ;
– void windowClosing(WindowEvent e) ;
– void windowDeactivated(WindowEvent e)
;

– void windowDeiconified(WindowEvent e)
;

– void windowIconified(WindowEvent e) ;
– void windowOpened(WindowEvent e) ;

• A class that implements WindowListener
must implement all of these methods!

3/14/01 Swing 48

WindowAdapter

• A class that implements the WindowListener
interface
– The methods in this class are empty. The class exists as

convenience for creating listener objects.
• To use the WindowAdapter class:

– Extend this class to create a WindowEvent listener

– Override the methods for the events of interest
– Create a listener object using the extended class and

then register it with a Window using the window's
addWindowListener() method.

• When the window's status changes the appropriate
method in the listener object is invoked, and the
WindowEvent is passed to it.

17

3/14/01 Swing 49

The Result
import javax.swing.*;
Import java.awt.event.*;

public class SwingFrame {
public static void main(String args[]) {

JFrame win = new JFrame("My First GUI Program");

win.addWindowListener(
new WindowAdapter() {

public void windowClosing(WindowEvent e) {
System.exit (0);

}
}

);

win.setSize(250, 150);
win.show();

}
} // SwingFrame

3/14/01 Swing 50

Buttons

• Buttons generate action events
• The ActionListener interface

– void actionPerformed(ActionEvent e);
– Note that there is no need for an ActionAdapter

class
• Generally one ActionListener will be

responsible for handling the events generated by a
group of buttons
– You can tell which button got pressed using the event’s
getActionCommand() method

3/14/01 Swing 51

Example
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class SwingFrame implements ActionListener {
private JFrame win;

public SwingFrame (String title) {
win = new JFrame(title);

win.addWindowListener (
new WindowAdapter () {

public void windowClosing (WindowEvent e) {
System.exit (0);

}
}

) ;

win.getContentPane(). setLayout(new FlowLayout());

18

3/14/01 Swing 52

Example
for (int i = 0; i < 10; i++) {

JButton b = new JButton(String. valueOf(i));
b .addActionListener(this);
win.getContentPane().add(b);

}

win.pack();
win.show();

}

public void actionPerformed(ActionEvent e) {
System.out.println("Button " +

e .getActionCommand() +
" was pressed ");

}

public static void main(String args []) {
SwingFrame f = new SwingFrame ("My First GUI");

}

} // SwingFrame

3/14/01 Swing 53

StopWatch.java

3/14/01 Swing 54

TimerLabel.java

19

3/14/01 Swing 55

GUI Program Design

• The GUI provides a view of the program, it is
clearly not the program

• Making the GUI code as independent of the
program code is a good strategy
– Changes in the program do not necessarily change the

GUI

– Different GUIs can be developed for the same program
– Debugging and maintaining both the GUI and the

program code is easier

3/14/01 Swing 56

Model-View-Controller

• The MVC pattern is commonly used to develop
applications that have a GUI component

• Consists of three parts
– Model

• The program

– View
• The GUI

– Controller
• The event handling mechanism

3/14/01 Swing 57

MVC

Model View

Controller

The model passes its data to
the view for rendering

The view determines which events
Are passed to the controller

The controller updates the model
Based on the events received

20

3/14/01 Swing 58

MVC in Swing

Model

View

Controller

The GUI

Program Logic

The Application

3/14/01 Swing 59

A Simple 4 Function Calculator

3/14/01 Swing 60

Painting

• When a GUI needs to change its visual
appearance it performs a paint operation

• Swing components generally repaint
themselves as needed

• Painting code executes on the event-
dispatching thread
– If painting takes a long time, no events will be

handled during that time

21

3/14/01 Swing 61

Example
import javax.swing.*; import java.awt.*;

public class Painting extends JPanel {
public Painting() {}

public void paintComponent(Graphics g) {
super.paintComponent(g);
g.setColor(Color.yellow); g.fillOval(10,10,50,50);
g.setColor(Color.black); g.drawOval(10,10,50,50);

}

public static void main(String args[]) {
JFrame win = new JFrame("Painting");
win.setSize(100, 100);
win.getContentPane().add(new Painting());
win.show();

}}

3/14/01 Swing 62

The Graphics Object

• The Graphics object both a context for painting
and methods for performing the painting.

• The graphics context consists of state such as the
current painting color, the current font, and the
current painting area
– The color and font are initialized to the foreground

color and font of the component just before the
invocation of paintComponent

• You can ignore the current painting area, if you
like

3/14/01 Swing 63

The Coordinate System

• Each component has its own integer
coordinate system
– Ranging from (0, 0) to (width - 1, height - 1)
– Each unit represents the size of one pixel

22

3/14/01 Swing 64

Borders

• You must take into account the component's size
and the size of the component's border
– A border that paints a one-pixel line around a

component changes the top leftmost corner from (0,0)
to (1,1) and reduces the width and the height of the
painting area by two pixels each

• You get the width and height of a component
using its getWidth and getHeight methods.

• To determine the border size, use the
getInsetsmethod.

3/14/01 Swing 65

Example
import javax.swing.*; import java. awt.*; import java. awt.Insets.*;

public class Painting extends JPanel {
public Painting() {}

public void paintComponent(Graphics g) {
super.paintComponent(g);

Insets border = getInsets();
int width = getWidth() - border.left - border.right;
int height = getHeight() - border.top - border.bottom;

int x = (width / 2) - 25 + border.left;
int y = (height / 2) - 25 + border.top;

g.setColor(Color.yellow); g. fillOval(x, y, 50, 50);
g.setColor(Color.black); g.drawOval(x, y, 50, 50);

}

} // Painting

3/14/01 Swing 66

Forcing a Paint

• The repaint()method schedules a paint
operation for the specified component
– A version of repaint() exists that allows

you to specify the area that needs to be
repainted

• Typically a component will invoke
repaint() when it has done something
to change its state

23

3/14/01 Swing 67

Example
import javax.swing.*; import javax.swing.event.*; import java.awt.*;
import java.awt.event.*; import java. awt.Insets.*;

public class Painting extends JPanel {
private boolean drawn = false;

private int x; private int y;

public Painting() {
addMouseListener(

new MouseInputAdapter() {
public void mouseClicked(MouseEvent ev) {

x = ev.getX(); y = ev.getY();
repaint();

}});
}

…

3/14/01 Swing 68

Animation
import javax.swing.*; import javax.swing.event.*; import java.awt.*;
import java.awt.event.*; import java. awt.Insets.*;

public class Painting extends JPanel implements ActionListener {
private boolean drawn = false;
private int x; private int y;

private Timer alarm;

public Painting() {
alarm = new Timer(500, this);
alarm.start();

}

public void actionPerformed(ActionEvent ev) {
x = x + 10; y = y + 10;
alarm.restart();
repaint();

}

