
1

3/14/01 Threads 1

Threads

• A thread is a flow of control in a program.
• The Java Virtual Machine allows an application to

have multiple threads of execution running
concurrently.

• When a Java Virtual Machine starts up, there is
usually a single thread (which typically calls the
method named main of some designated class).

• Threads are given priorities. A high priority
thread has preference over a low priority thread.

3/14/01 Threads 2

Understanding Threads

• You must be able to answer the following
questions
– What code does a thread execute?

– What states can a thread be in?
– How does a thread change its state?

– How does synchronization work?

3/14/01 Threads 3

Thread Objects

• As is everything else, threads in Java are
represented as objects.

• The code that a thread executes is contained in its
run()method.
– There is nothing special about run, anyone can call it.

• To make a thread eligible for running you call its
start()method

2

3/14/01 Threads 4

Example

public class CounterThread extends Thread {
public void run() {
for (int i=0; i<10; i++)

System.out.println(“Count: “ + i);
}

public static void main(String args[]) {
CounterThread ct = new CounterThread();
ct.start();

}
}

3/14/01 Threads 5

Interface Runnable

• Classes that implement Runnable can also be
run as separate threads

• Runnable classes have a run() method
• In this case you create a thread specifying the
Runnable object as the constructor argument

3/14/01 Threads 6

Example
public class DownCounter implements Runnable {

public void run() {
for (int i=10; i>0; i--)

System.out.println(“Down: “+ i);
}

public static void main(String args[]) {
DownCounter ct = new DownCounter();
Thread t = new Thread(ct);

t.start();
}

}

3

3/14/01 Threads 7

Many
public class Many extends Thread {
private int retry; private String info;

public Many (int retry, String info) {
this.retry = retry; this.info = info;

}

public void run () {
for (int n = 0; n < retry; ++ n) work();

quit();
}

protected void work () { System.out.print(info); }
protected void quit () { System.out.print('\n'); }

public static void main (String args []) {
if (args != null)

for (int n = 0; n < args.length; ++n)
new Many(args .length, args[n]).start();

}}

3/14/01 Threads 8

When Execution Ends

• The Java Virtual Machine continues to execute
threads until either of the following occurs:
– The exit method of class Runtime has been called

– All threads that are not daemon threads have died,
either by returning from the call to the run()or by
throwing an exception that propagates beyond run() .

• You cannot restart a dead thread, but you can
access its state and behavior.

3/14/01 Threads 9

Thread Scheduling

• Threads are scheduled like processes
• Thread states

– Running
– Waiting, Sleeping, Suspended, Blocked

– Ready
– Dead

• When you invoke start() the Thread is marked
ready and placed in the thread queue

4

3/14/01 Threads 10

Thread States

Running

Ready

Waiting

The start()method places a

thread in the ready state

The scheduler selects a thread
and places it in the running state

A thread that is waiting for I/O, was suspended, is sleeping,
blocked, or otherwise is unable to do any more work is placed in
the waiting state

3/14/01 Threads 11

Scheduling Implementations

• Scheduling is typically either:
– non-preemptive

– preemptive

• Most Java implementations use preemptive
scheduling.
– the type of scheduler will depend on the JVM that you

use.

– In a non-preemptive scheduler a thread leaves the
running state only when it is ready to do so.

3/14/01 Threads 12

Thread Priorities

• Threads can have priorities from 1 to 10 (10 is the
highest)

• The default priority is 5
– The constants Thread.MAX_PRIORITY,

Thread.MIN_PRIORITY, and
Thread.NORM_PRORITY give the actual values

• Priorities can be changed via setPriority()
(there is also a getPriority())

5

3/14/01 Threads 13

isAlive()

• The method isAlive() determines if a thread is
considered to be alive
– A thread is alive if it has been started and has not yet

died.

• This method can be used to determine if a thread
has actually been started and has not yet
terminated

3/14/01 Threads 14

isAlive()
public class WorkerThread extends Thread {

private int result = 0;

public void run() {
// Perform a complicated time consuming calculation
// and store the answer in the variable result

}

public static void main(String args[]) {
WorkerThread t = new WorkerThread();
t.start();

while (t.isAlive()); // What is wrong with this?

System.out.println(result);
}

}

3/14/01 Threads 15

sleep()

• Puts the currently executing thread to sleep for the
specified number of milliseconds
– sleep(int milliseconds)
– sleep(int millisecs, int nanosecs)

• Sleep can throw an InterruptedException
• The method is static and can be accessed through

the Thread class name

6

3/14/01 Threads 16

sleep()
public class WorkerThread extends Thread {

private int result = 0;

public void run() {
// Perform a complicated time consuming calculation
// and store the answer in the variable result

}

public static void main(String args[]) {
WorkerThread t = new WorkerThread();
t.start();

while (t.isAlive())
try {

sleep(100);
} catch (InterruptedException ex) {}

System.out.println(result);
}}

3/14/01 Threads 17

Timer
import java.util.Date;

class Timer implements Runnable {
public void run() {
while (true) {

System.out. println(new Date());

try {
Thread.currentThread().sleep(1000);

}
catch (InterruptedException e) {}

}
}

public static void main(String args[]) {
Thread t = new Thread(new Timer());

t.start();
System.out.println("Main done");

}
}

3/14/01 Threads 18

yield()

• A call to the yield()method causes the
currently executing thread to go to the ready state
(this is done by the thread itself)

7

3/14/01 Threads 19

yield()
public class WorkerThread extends Thread {

private int result = 0;

public void run() {
// Perform a complicated time consuming calculation
// and store the answer in the variable result

}

public static void main(String args[]) {
WorkerThread t = new WorkerThread();
t.start();

while (t.isAlive())
yield()

System.out.println(result);
}

}

3/14/01 Threads 20

Joining Threads

• Calling isAlive() to determine when a thread has
terminated is probably not the best way to accomplish this

• What would be better is to have a method that once
invoked would wait until a specified thread has terminated

• join()does exactly that
– join()
– join(long timeout)
– join(long timeout, int nanos)

• Like sleep(), join() is static and can throw an
InterruptedException

3/14/01 Threads 21

join()
public class WorkerThread extends Thread {

private int result = 0;

public void run() {
// Perform a complicated time consuming calculation
// and store the answer in the variable result

}

public static void main(String args[]) {
WorkerThread t = new WorkerThread();
t.start();

try {
t.join();

} catch (InterruptedException ex) {}

System.out.println(result);
}

}

8

3/14/01 Threads 22

Problems!!
import java.util.*;

public class Sync extends Thread {
private static int common = 0;
private int id;

public Sync(int id) { this.id = id; }

public void run() {
for (int i = 0; i < 10; i++) {

int tmp = common; tmp = tmp + 1;

try {
Thread.currentThread().sleep(10);

} catch (InterruptedException e) {};

common = tmp;
}

}

3/14/01 Threads 23

Problems!!
public static void main(String args[]) {

int numThreads = 0;
try {

numThreads = Integer.parseInt(args[0]);
} catch (NumberFormatException e) { System.exit(1); }

List threads = new ArrayList();
for (int i = 0; i < numThreads; i++) {

threads.add(new Sync(i));
((Thread)threads.get(i)).start(); }

Iterator i = threads.iterator();
while (i.hasNext())

try {
((Thread)i.next()).join();

} catch(InterruptedException e) {};

System.out.println(common);
}}

3/14/01 Threads 24

Synchronization

• Every object has a lock that can be held by at most one
thread at a time
– A thread gets a lock by entering a synchronized block of code

• A thread can give up a lock by:
– leaving a block of synchronized code
– calling lock.wait()

• A thread executing wait()can be released by:
– notify()

• some waiting thread is allowed to compete for the lock
– notifyAll()

• all waiting threads are allowed to compete for the lock

9

3/14/01 Threads 25

Synchronized Code

• There are two ways to mark code as synchronized:
– use the synchronize statement

– using the synchronized method shorthand

– which the same as

synchronize(someObject) {
// must obtain lock to enter this block.
// wait() ing threads have to reacquire the
// lock before they are allowed to proceed.

}

public synchronized someMethod() { … }

public someMethod () {
synchronized(this) { … } }

3/14/01 Threads 26

Example
import java.util.*;

public class Sync extends Thread {
private static int common = 0;
private int id;
private Object lock;

public Sync(int id, Object lock) {
this.id = id; this.lock = lock;

}

public void run() {
for (int i = 0; i < 10; i++)

synchronized(lock) {
int tmp = common; tmp = tmp + 1; common = tmp;

}

yield();
}

3/14/01 Threads 27

Example
public static void main(String args[]) {

int numThreads = 0;
try {

numThreads = Integer.parseInt(args[0]);
} catch (NumberFormatException e) { System.exit(1); }

List threads = new ArrayList();
Object theLock = new Integer(0);

for (int i = 0; i < numThreads; i++) {
threads.add(new SyncFixed(i, theLock));
((Thread)threads.get(i)).start(); }

Iterator i = threads.iterator();
while (i.hasNext())

try { (Thread)i.next()).join();
} catch(InterruptedException e) {};

System.out.println(common); }}

10

3/14/01 Threads 28

Test 1
public class Locks1 extends Thread {

private Object lock; private int myId;

public Locks1(Object l, int id) { lock = l; myId = id; }

public void method() {
synchronized(lock) {
for (int i = 0; i < 3; i++) {

System.out.println("Thread #" + myId + " is tired");
try {
Thread.currentThread ().sleep(10);

} catch (InterruptedException e){}
System.out.println("Thread #" + myId + " is rested"); }}}

public void run() { method(); }

public static void main(String args[]) {
Integer lock = new Integer(0);
for (int i = 0; i < 3; i++) new Locks1(lock, i).start(); }}

3/14/01 Threads 29

Answer 1
Since all the threads are using the same object for the lock, each thread will run its method() to

completion before another thread can get the lock.

Thread #0 is tired
Thread #0 is rested
Thread #0 is tired
Thread #0 is rested
Thread #0 is tired
Thread #0 is rested
Thread #1 is tired
Thread #1 is rested
Thread #1 is tired
Thread #1 is rested
Thread #1 is tired
Thread #1 is rested
Thread #2 is tired
Thread #2 is rested
Thread #2 is tired
Thread #2 is rested
Thread #2 is tired
Thread #2 is rested

3/14/01 Threads 30

Test 2
public class Locks2 extends Thread {

private Object lock = new Integer(0); private int myId;

public Locks2(int id) { myId = id; }

public void method() {
synchronized (lock) {
for (int i = 0; i < 3; i++) {

System.out.println("Thread #" + myId + " is tired");
try {
Thread.currentThread ().sleep(10);

} catch (InterruptedException e){}
System.out.println("Thread #" + myId + " is rested");

}}}

public void run() { method(); }

public static void main(String args[]) {
for (int i = 0; i < 3; i++) new Locks2(i).start(); }}

11

3/14/01 Threads 31

Answer 2
There is no synchronization here because each thread has a different lock. the thread still has to
get the lock to enter the synchronized block, but since the lock s are all different the
synchronization is lost.

Thread #1 is tired
Thread #2 is tired
Thread #0 is tired
Thread #1 is rested
Thread #1 is tired
Thread #2 is rested
Thread #2 is tired
Thread #0 is rested
Thread #0 is tired
Thread #1 is rested
Thread #1 is tired
Thread #2 is rested
Thread #2 is tired
Thread #0 is rested
Thread #0 is tired
Thread #1 is rested
Thread #2 is rested
Thread #0 is rested

3/14/01 Threads 32

Test 3
public class Locks3 extends Thread {

private static Object lock = new Integer(0); private int myId;

public Locks3(int id) { myId = id; }

public void method() {
synchronized (lock) {
for (int i = 0; i < 3; i++) {

System.out.println("Thread #" + myId + " is tired");
try {
Thread.currentThread ().sleep(10);

} catch (InterruptedException e){}
System.out.println("Thread #" + myId + " is rested");

}}}

public void run() { method(); }

public static void main(String args[]) {
for (int i = 0; i < 3; i++) new Locks3(i).start(); }}

3/14/01 Threads 33

Answer 3
Here we have synchronization because the lock is a static member . This means that regardless of the
number of objects that are instantiated from this class, there w ill always be exactly one lock.

Thread #0 is tired
Thread #0 is rested
Thread #0 is tired
Thread #0 is rested
Thread #0 is tired
Thread #0 is rested
Thread #1 is tired
Thread #1 is rested
Thread #1 is tired
Thread #1 is rested
Thread #1 is tired
Thread #1 is rested
Thread #2 is tired
Thread #2 is rested
Thread #2 is tired
Thread #2 is rested
Thread #2 is tired
Thread #2 is rested

12

3/14/01 Threads 34

Test 4
public class Locks4 extends Thread {

private int myId;

public Locks4(int id) { myId = id; }

public synchronized void method() {
for (int i = 0; i < 3; i++) {
System.out.println("Thread #" + myId + " is tired");
try {

Thread.currentThread().sleep(10);
} catch (InterruptedException e){}
System.out.println("Thread #" + myId + " is rested");

}
}

public void run() { method(); }

public static void main(String args[]) {
for (int i = 0; i < 3; i++) new Locks(i).start(); }}

3/14/01 Threads 35

Answer 4
No synchronization because each thread is locking on a different Locks4 object.

Thread #0 is tired
Thread #1 is tired
Thread #2 is tired
Thread #0 is rested
Thread #0 is tired
Thread #1 is rested
Thread #1 is tired
Thread #2 is rested
Thread #2 is tired
Thread #0 is rested
Thread #0 is tired
Thread #1 is rested
Thread #1 is tired
Thread #2 is rested
Thread #2 is tired
Thread #0 is rested
Thread #1 is rested
Thread #2 is rested

3/14/01 Threads 36

SyncQueue
public class SyncQueue {

private Object q[]; private int head; private int tail;
private int count; private int cap;

public SyncQueue(int size) {
q = new Object[size]; head = 1; tail = 0; count = 0; cap = size; }

public synchronized void enqueue (Object o) {
if (!isFull()) { tail = (tail + 1) % cap; q[tail] = o; count++; }}

public synchronized Object dequeue() {
Object retval = null;
if (!isEmpty()) { retval = q[head]; head = (head + 1) % cap; count- -; }
return retval; }

public Object peek() {
Object retval = null;
if (!isEmpty()) retval = q[head];
return retval;}

public boolean isEmpty() { return count == 0; }
public boolean isFull () { return count == cap; }}

13

3/14/01 Threads 37

Synchronized Static Methods

• Java also provides synchronized static methods.
• Before a synchronized static method is executed,

the calling thread must first obtain the class lock.
• Since there is only one class lock, at most one

thread can hold the lock for the class (object locks
can be held by different threads locking on
different instances of the class).

3/14/01 Threads 38

wait()/notify()

• In all of the previous examples a thread gave up a
lock when it left the synchronized block

• It is possible for a thread to give up a lock while it
is in a synchronized block
– The method wait() is executed on the object whose

lock the thread is holding

• The thread will resume execution via a call to the
lock object’s notify()method

3/14/01 Threads 39

wait()/notify()

Has The LockThreads waiting to be
notified

wait()
JVM Selects next thread

Threads waiting for
The lock

notify()/notifyAll()

One thread selected by
the JVM

Exits synchronized block
JVM Selects next thread

14

3/14/01 Threads 40

Customer
public class Customer extends Thread {

public static int MAX_ITEMS = 25; // Max items
private int id; // This customers id
private int numItems; // The numebr of items for this customer
private Cashier register; // The only register in th e store

public Customer(int id, Cashier register) {
this.id = id;
this.register = register;

numItems = (int)(Math.random() * MAX_ITEMS) + 1;
}

public void run() {
register. checkOut ();
System.out.println("Customer " + id + " is checking out");

try { sleep(500); } catch (InterruptedException e) {}

System.out.println("Customer " + id + " is leaving the line");
register.done();

}
}

3/14/01 Threads 41

Cashier
public interface Cashier {

/**
* Invoked by a customer when they are ready to check out.
* Contains the logic required to select the one customer
* that the cashier will service. If the cashier is already
* serving another customer, this customer will wait until
* the other customer has finished with the cashier.
*/

public void checkOut();

/**
* Invoked by a customer when they are finished with the
* cashier. If customers are waiting for the cashier,
* one of the waiting customers will be selected and
* serviced by the cashier.
*/

public void done();

} // Cashier

3/14/01 Threads 42

Cashier1
public class Cashier1 implements Cashier {

private boolean busy = false; // Is the cashier busy?

public synchronized void checkOut() {
// While the cashier is busy -- wait

while (busy)
try {

wait();
} catch (InterruptedException e){}

busy = true;
}

public synchronized void done() {
if (busy) {

busy = false;
notifyAll ();

}
}

} // Cashier1

15

3/14/01 Threads 43

Cashier2
import java.util.*;

public class Cashier2 implements Cashier {
private boolean busy = false; // Is the cashier busy?
private int tenOrLess = 0; // How many folks have 10 or fewer

public synchronized void checkOut() {
Customer me = (Customer)Thread.currentThread ();
int items = me.getNumItems();

if (items <= 10) tenOrLess ++;
while (busy || tenOrLess > 0 && items > 10)

try { wait(); } catch (InterruptedException e){}
busy = true;

}

public synchronized void done() {
if (busy) {

Customer me = (Customer)Thread.currentThread ();
if (me.getNumItems() <= 10) tenOrLess- -;
busy = false;
notifyAll ();

} }

3/14/01 Threads 44

suspend()

• The thread class has a suspend()method
– A suspended thread remains suspended until it is resumed by

another thread

• This method has been deprecated, as it is deadlock-prone:
– A suspended thread holds any locks that it may have.
– If the thread holds a lock, no thread can obtain the lock until the

target thread is resumed.
• If the thread that would resume the target thread attempts

to obtain the lock prior to calling resume, deadlock results.
• resume() is deprecated as well (it is more or less useless

without suspend()

3/14/01 Threads 45

stop()

• The thread class has a stop()method
– Forces a thread to stop executing
– Can be invoked by another thread

• This method has been deprecated, as it is unsafe:
– Stopping a thread with Thread.stop causes it to release all of the

locks that it has holding
– If any of the objects protected by these locks are in an

inconsistent state, the damaged objects become visible to other
threads, potentially resulting in arbitrary behavior.

• Many uses of stop should be replaced by code that simply
modifies some variable to indicate that the target thread
should stop running.

16

3/14/01 Threads 46

Example
private boolean continue = true;

public void stop() {
continue = false

}

public void run() {
while (continue) {
try {

thisThread.sleep(100);
} catch (InterruptedException e){

}
}

