Threads

A thread isaflow of control in aprogram.

The Java Virtual Machine alows an application to
have multiple threads of execution running
concurrently.

When aJava Virtual Machine starts up, thereis
usually asingle thread (which typically callsthe
method named main of some designated class).
Threads are given priorities. A high priority
thread has preference over alow priority thread.

3/14/01 Threads 1

Understanding Threads

Y ou must be able to answer the following
guestions

— What code does athread execute?

— What states can athread bein?

— How does athread change its state?

— How does synchronization work?

3/14/01 Threads 2

Thread Objects

« Asiseverything else, threadsin Java are
represented as objects.

« The code that athread executesis contained in its
run() method.

— Thereisnothing special about run, anyone can call it.
« Tomakeathread digible for running you cal its
start () method

3/14/01 Threads 3

Example

public class CounterThread extends Thread {
public void run() {
for (int i=0; i<10; i++)
Systemout. println(“Count: “ +i);

public static void main(String args[]) {
Counter Thread ct = new Count er Thread() ;
ct.start();

3/14/01 Threads

Interface Runnable

¢ Classes that implement Runnabl e can dso be
run as separate threads

¢ Runnabl e classeshavear un() method

« Inthiscaseyou create athread specifying the
Runnabl e object as the constructor argument

3/14/01 Threads

Example

public class DownCounter inplenments Runnable {
public void run() {
for (int i=10; i>0; i--)
Systemout. println(“Down: “+ i);
}

public static void main(String args[]) {
DownCount er ct = new DownCounter();
Thread t = new Thread(ct);

t.start();

}
}

3/14/01 Threads

Many

public class Many extends Thread {
private int retry; private String info;

public Many (int retry, String info) {
this.retry = retry; this.info = info;

}

public void run () {

for (int n=0; n<retry; ++ n) work();
quit();
}

protected void work () { Systemout.print(info); }
protected void quit () { Systemout.print(‘\n'); }

public static void main (String args []) {
if (args !=null)

for (int n=0; n< args.length; ++n)
new Many(args.length, args[n]).start():

3/14/01 Threads

When Execution Ends

The Java Virtual Machine continues to execute
threads until either of the following occurs:
— The exit method of classRunt i me has been called
— All threads that are not daemon threads have died,
either by returning fromthe call tother un(') or by
throwing an exception that propagates beyondr un() .
Y ou cannot restart a dead thread, but you can
access its state and behavior.

3/14/01 Threads

Thread Scheduling

¢ Threads are scheduled like processes
* Thread states
— Running
— Waiting, Sleeping, Suspended, Blocked
— Ready
— Dead
* Whenyouinvokest art () theThread ismarked
ready and placed in the thread queue

3/14/01

Threads 9

Thread States

Thest ar t () method placesa
hread in the ready stale

The scheduler selects athread
and placesit in the running state

A thread that is waiting for 1/0, was suspended, is sleeping,

blocked, or otherwise is unable to do any more work is placed in
the: stat

3/14/01 Threads

Scheduling Implementations

¢ Scheduling is typically either:

— non-preemptive

— preemptive

Most Java implementations use preemptive
scheduling.

— thetype of scheduler will depend on the JVM that you
use.

— Inanon-preemptive scheduler athread |eaves the
running state only when it is ready to do so.

3/14/01 Threads

Thread Priorities

¢ Threads can have prioritiesfrom 1to 10 (10 isthe
highest)
« Thedefault priority is5
— The constants Thread. MAX_PRIORITY,
Thread.MIN_PRIORITY, and
Thread. NORM_PRORITY givethe actual values
« Priorities can be changed viaset Pri ority()
(thereisalsoaget Priority())

3/14/01 Threads

i sAlive()

¢ Themethodi sAl i ve() determinesif athreadis
considered to be alive

— A thread isaliveif it has been started and has not yet
died.

¢ This method can be used to determine if athread
has actually been started and has not yet
terminated

3/14/01 Threads 13

i sAlive()

public class WorkerThread extends Thread {
private int result = 0;
public void run() {
/1 Performa conplicated tinme consum ng cal cul ation

/1 and store the answer in the variable result
}

public static void main(Stringargs[]) {
Worker Thread t = new Worker Thread() ;
t.start();
while (t.isAlive()); // What is wong with this?

Systemout.println(result);

3/14/01 Threads 14

sl eep()

« Putsthe currently executing thread to sleep for the
specified number of milliseconds
—sleep(int mlliseconds)
—sleep(int mllisecs, int nanosecs)
¢ Sleep can throw anl nt er r upt edExcept i on
* Themethod is static and can be accessed through
the Thr ead class name

3/14/01 Threads 15

sl eep()

public class WorkerThread extends Thread {
private int result = 0;

public void run() {
/1 Performa conplicated tinme consum ng cal cul ation
/1 and store the answer in the variable result

}

public static void main(Stringargs[]) {
Worker Thread t = new Worker Thread () ;
t.start();

while (t.isAlive())
try {
sl eep(100);
} catch (InterruptedException ex) {}

Systemout.printin(result);

1}
3/14/01 Threads 16
import java.util.Date;
class Timer inplenents Runnable {
public void run() {
while (true) {
System out. printin(new Date());
try {
Thread. current Thread() . sl eep(1000);
catch (InterruptedExceptione) {}
}
}
public static void mmin(String args[]) {
Thread t = new Thread(new Timer());
t.start();
Systemout.println(“Min done");
}
}
3/14/01 Threads 17

yi el d()

¢ Acdltotheyi el d() method causesthe
currently executing thread to go to the ready state
(thisis done by the thread itself)

3/14/01 Threads 18

yi el d()

public class WorkerThread extends Thread {
private int result = 0;

public void run() {

/1 Performa conplicated tinme consum ng cal cul ation
/1 and store the answer in the variable result

}

public static void main(Stringargs[]) {
Worker Thread t = new Worker Thread () ;
t.start();

while (t.isAlive())
yield()

Systemout.printin(result);

}

3/14/01 Threads 19

Joining Threads

e Callingi sAlive() todetermine when athread has
terminated is probably not the best way to accomplish this
« What would be better is to have amethod that once
invoked would wait until a specified thread has terminated
« joi n() doesexactly that
- join()
— join(long tineout)
— join(long tinmeout, int nanos)
« Likesl eep(),j oi n() isstatic and can throw an
I nterrupt edExcepti on

3/14/01 Threads 20

public class Worker Thread extends Thread {
private int result = 0;

public void run() {
/1 Performa conplicated time consuming cal cul ation
/1 and store the answer in the variable result

}

public static void main(Stringargs[]) {
Worker Thread t = new Worker Thread () ;

t.start();
try {
t.join();

} catch (InterruptedException ex) {}

Systemout.printin(result);
}
}

3/14/01 Threads 21

Problems!!

inmport java.util.*;

public class Sync extends Thread {
private static int comon = 0;
private int id;

public Sync(int id) { this.id =id; }

public void run() {
for (int i =0; i <10; i++) {
int tnp = common; tmp =tnp + 1;
try {

Thread. current Thread() . sl eep(10);
} catch (InterruptedException e) {};

common = tnp;

3/14/01 Threads 22

Problems!!

public static void main(String args[]) {
int nunThreads = 0;

try {
nuniThreads = Integer.parselnt (args[0]);
} catch (Nunmber For mat Exception e) { Systemexit(1); }

List threads = new ArraylList();

for (int i =0; i < nunThreads; i++) {
threads. add(new Sync(i));
((Thread)threads.get(i)).start(); }

Iterator i = threads.iterator ();
while (i.hasNext())
tr

v {
((Thread)i.next()).join();
} catch(InterruptedException e) {}:

Systemout.println(comon);
1

3/14/01 Threads 23

Synchronization

« Every object hasalock that can be held by at most one
thread at atime

— A thread getsalock by entering a synchronized block of code
« A thread can give up alock by:

— leaving ablock of synchronized code
— calingl ock. wai t ()

« A thread executingwai t () can bereleased by:

— notify()
« some waiting thread is allowed to compete for the lock
— notifyAll()

« al waiting threads are alowed to compete for the lock

3/14/01 Threads 24

Synchronized Code

¢ There are two ways to mark code as synchronized:
— usethesynchr oni ze statement

synchroni ze(someGhj ect)
/ nust obtain lock to enter this block
/1 wait()ing threads have to reacquire the
Il lock before they are allowed to proceed

}
— using the synchronized method shorthand

public synchronized someMethod() { ..}

— which thesameas
public someMethod () {
synchroni zed(this) { 1}

3/14/01 Threads 25

Example

inmport java.util.*;

public class Sync extends Thread {
private static int comon = 0;
private int id,
private Object |ock;

public Sync(int id, Object lock) {
this.id =id; this.lock = lock;
}

public void run() {
for (int i =0; i <10; i++)
synchroni zed(lock) {
int tnmp = comon; tmp = tnp + 1; conmon = tnp;

}

yield();
}

3/14/01 Threads 26

Example

public static void main(String args[]) {
int nunrhreads = 0;
try {
nunThreads = Integer.parselnt(args[0]);
} catch (Nunber For mat Exception e) { Systemexit(1); }

List threads = new ArrayList();
Obj ect theLock = new Integer(0);

for (int i =0; i <nunThreads; i++) {
threads. add(new SyncFixed(i, theLock));
((Thread)threads.get(i)).start(); }

Iterator i = threads.iterator();
while (i.hasNext())
try { (Thread)i.next()).join();
} catch(InterruptedExceptione) {};

Systemout.printin(comon); }}
3/14/01 Threads 27

Test 1

public class Locksl extends Thread {
private Object lock; private int nyld;

public Locksl(Object I, int id) { lock =1; nyld = id; }

public void nethod() {
synchroni zed(lock) {
for (int i 0; i <3 i++) {
Systemout.println("Thread #" + nyld + " is tired");
try {
Thread.current Thread (). sl eep(10);
} catch (InterruptedException e){}
Systemout.printin("Thread #' + nyld +

is rested"); }}}
public void run() { method(); }
public static void main(String args[]) {

Integer lock = new Integer(0);

for (int i =0; i <3; i++) new Locks1(lock, i).start(); }}

3/14/01 Threads 28

Answer 1

Since all the threads are using the same object for the lock, each thread will runitsmet hod() 1o
completion before another thread can get the lock

Thread #0istired
Thread #0isrested
Thread #0istired
Thread #0isrested
Thread #0istired
Thread #0isrested
Thread #1istired
Thread #1 isrested
Thread #1istired
Thread #1 isrested
Thread #1istired
Thread #1 isrested
Thread #2istired
Thread #2 isrested
Thread #2istired
Thread #2isrested
Thread #2istired
Thread #2isrested

3/14/01 Threads 29

Test 2

public class Locks2 extends Thread {
private Object lock = new Integer(0); private int nyld;

public Locks2(int id) { nyld=id; }

public void method() {
synchroni zed (lock) {

for (int i =0; i <3; i++)
Systemout.printin("Thread #" + nyld + " is tired");
try {

Thread.currentThread().sleep(10);
} catch (InterruptedException e){}
Systemout.printin("Thread #' + myld + " is rested");
11

public void run() { method(); }

public static void main(String args[]) {
for (int i =0; i <3; i++) new Locks2(i).start(); }}

3/14/01 Threads 30

10

Answer 2

There s no synchronization here because each thread has a diffaent lock. the thread still has to
get the lock to enter the synchronized block, but since the lock s are all different the
synchronization is lost.

Thread #1istired
Thread #2istired
Thread #0istired
Thread #1 isrested
Thread #1istired
Thread #2isrested
Thread #2istired
Thread #0 isrested
Thread #0istired
Thread #1 isrested
Thread #1istired
Thread #2isrested
Thread #2istired
Thread #0 isrested
Thread #0istired
Thread #1 isrested
Thread #2isrested
Thread #0isrested

3/14/01 Threads 31

Test 3

public class Locks3 extends Thread {
private static Object lock = new Integer(0); private int nyld;

public Locks3(int id) { nyld=id; }

public void method() {
synchroni zed (lock) {

for (int i =0; i <3; i++) {
Systemout.printin("Thread #" + nyld + " is tired");
try {

Thread.current Thread().sleep(10);
} catch (InterruptedException e){}
Systemout.printin("Thread #' + nyld + " is rested");
1

public void run() { nmethod(); }

public static void main(String args[]) {
for (inti =0; i <3; i++) new Locks3(i).start(); }}

3/14/01 Threads 32

Answer 3

Here we have synchronization because the lock is a static member . This means that regardiess of the
number of objects that are instantiated from this class, there w ill always be exactly one lock.

Thread #0istired
Thread #0 isrested
Thread #0istired
Thread #0isrested
Thread #0istired
Thread #0isrested
Thread #1istired
Thread #1isrested
Thread #1istired
Thread #1 isrested
Thread #1istired
Thread #1isrested
Thread #2istired
Thread #2isrested
Thread #2istired
Thread #2isrested
Thread #2istired
Thread #2 isrested

3/14/01 Threads 33

11

Test 4

public class Locks4 extends Thread {
private int nyld;

public Locks4(int id) { nyld=id; }

public synchronized void method() {
for (int i =0; i <3; i++)

{
Systemout.println("Thread # + nyld + " is tired");

try {
Thread. current Thread().sl eep(10);
} catch (InterruptedExceptione){}

Systemout.println("Thread #" + nyld + " is rested");

}
}

public void run() { method(); }

public static void main(String args[]) {

for (int i =0; i <3; i++) new Locks(i).start();

3/14/01 Threads

1}
34

Answer 4

No synchronization because each thread is locking on a different Locks4 object.

Thread #0 istired
Thread #1istired
Thread #2istired
Thread #0 isrested
Thread #0istired
Thread #1 isrested
Thread #1istired
Thread #2isrested
Thread #2istired
Thread #0 isrested
Thread #0istired
Thread #1 isrested
Thread #1istired
Thread #2isrested
Thread #2istired
Thread #0 isrested
Thread #1 isrested
Thread #2isrested

3/14/01 Threads

SyncQueue
public class SyncQueue

private Object q[]: private int head; private int tail;
private int count; private int cap;

public SyncQueue(int size) {
q = new Object[size]; head = 1; tail = 0; count = 0; cap = size;

public synchronized void enqueue(Cbject o) {

}

it (lisFull()) { tail = (tail + 1) %cap; q[tail] = o; count++ }}

public synchronized Object dequeue() {
Gbject retval = null;
it (lisEnpty()) { retval = q[head]; head = (head + 1) % cap;
return retval; }

public Object peek() {
Gbject retval = null;
it (tisEnpty()) retval = q[head];
return retval;}

public bool ean i SEnpty() { return count
public boolean isFull () { return count

3/14/01 Threads

count - -;

}

12

Synchronized Static Methods

« Java aso provides synchronized static methods.

« Before a synchronized static method is executed,
the calling thread must first obtain the class lock.

¢ Since there is only one class lock, at most one
thread can hold the lock for the class (object locks
can be held by different threads locking on
different instances of the class).

3/14/01 Threads 37

wai t ()/ notify()

« Inall of the previous examples athread gave up a
lock when it |eft the synchronized block

« Itispossiblefor athread to give up alock whileit
isin asynchronized block
— The method wai t () isexecuted on the object whose

lock the thread is holding

¢ Thethread will resume execution viaacall to the

lock object’'snot i fy() method

3/14/01 Threads 38

wai t ()/ notify()

notify()/notifyAl

One thread selected by
the VM

>

Exits synchronized block
JVM Selects next thread

wai t ()
JVM Selects next thread

3/14/01 Threads 39

13

Cust oner

public class Customer extends Thread {
public static int MAX_ITEMS = 25, // Max items

/1 This customers id
/] The numebr of items for this customer
/1 The only register in the store

private int id;
private int num tems;
private Cashier register;

public Customer(int id, Cashier register) {
this.id = id;
this.register = register;

numtems = (int)(Math.randon() * MAX_ITEMS) + 1;
}
public void run() {

register. checkQut ();

Systemout.println(“Customer " + id + " is checking out");

try { sleep(500); } catch (InterruptedException e) {}

Systemout.printin("Customer * + id + " is leaving the line");

regi ster. done();

}
! 3/14/01 Threads 40
public interface Cashier {
Jee
* Invoked by a customer when they are ready to check out.
* Contains the logic required to select the one customer
* that the cashier will service. If the cashier is already
* serving another customer, this customer will wait until
* the other customer has finished with the cashier
I
public void checkOut();
s
* Invoked by a customer when they are finished with the
* cashier. If customers are waiting for the cashier,
* one of the waiting customers will be selected and
* serviced by the cashier
!
public void done();
} /1 Cashier
3/14/01 Threads 41
public class Cashierl inplements Cashier {
private bool ean busy = false; // Is the cashier busy?
public synchronized void checkOut() {
/1 Mhile the cashier is busy -- wait
while (busy)
try {
wait();
} catch (InterruptedExceptione){}
busy = true;
public synchronized void done() {
it (busy) {
busy = false:
noti fyAll ();
}
} /1 Cashierl
3/14/01 Threads 42

14

Cashi er?2

import java. util.*;

public class Cashier2 inplements Cashier {
private bool ean busy = false; // Is the cashier busy?
private int tenOrLess = 0; /1 How many folks have 10 or fewer

public synchronized void checkOut() {
Customer me = (Customer)Thread. current Thread();
int items = me.getNum tems();

if (items <= 10) tenOrLess++
while (busy || tenOrless > 0 & items > 10)

try { wait(); } catch (InterruptedException e){}
busy = true;

}

public synchronized void done() {
it (busy) {
Customer me = (Custoner)Thread. current Thread ();
if (me.getNumtems() <= 10) tenOrLess- -;
busy = false;
noti fyAll ();

}
3/14/01 Threads 43

suspend()

¢ Thethread classhasasuspend() method
— A suspended thread remains suspended until it is resumed by
another thread
« Thismethod has been deprecated, asit is deadl ock-prone:
— A suspended thread holds any locksthat it may have.
— If thethread holds alock, no thread can obtain the lock until the
target thread is resumed.
« |f thethread that would resume the target thread attempts
to obtain thelock prior to calling resume, deadlock results.
* resune() isdeprecated aswell (it is more or less useless
without suspend()

3/14/01 Threads a4

stop()

¢ Thethread classhasast op() method
— Forcesathread to stop executing
— Can be invoked by another thread

« Thismethod has been deprecated, asit isunsafe:
— Stopping athread with Thread.stop causesit to release al of the
locks that it has holding
— If any of the objects protected by these locks arein an
inconsistent state, the damaged objects become visible to other
threads, potentially resulting in arbitrary behavior.
« Many uses of stop should be replaced by code that simply
modifies some variable to indicate that the target thread
should stop running.

3/14/01 Threads 45

15

3/14/01

Example

private bool ean continue = true;

public void stop() {
continue = false

}

public void run() {
while (continue) {
try {
thi sThread. sl eep(100);
} catch (InterruptedException e){

Threads

16

