
9 Replication: Availability and Consistency

• Motivation for replication

• Multicasting updates to a group of replicas

• Total Ordering

• Causal Ordering

• Techniques for ordering protocols

• ISIS CBCAST

9.1 What is Replication?

• Multiple copies of dynamic state stored on multiple machines eg Copies of files
stored on different machines, name servers storing name address mappings

• Caching can be seen as a form of replication.

9.1.1 Why is Replication used?

Performance enhancement • Single Server acts as a bottleneck - if we can
balance load amongst multiple servers, get apparent performance gain

• If clients are geographically distributed, we can site servers near clients
and reduce communication costs

Availability • If a machine fails, then we can still provide a service

• Probability of total failure reduced such as all data being lost, since data
replicated across multiple machines

• If probability of failure is pr(fail) for a given machine in n machines,
then probability of loss of service is 1− pr(fail)n

• eg, if mean time between failure for 3 machines is 5 days, repair time is
four hours, then assuming independence of failure, pr(fail) = 4

5×24 =
0.03.
Availability = 1− 0.033 = 99.996%

Fault Tolerance Even in the presence of failure, the service will continue to give
the correct service

• Stronger than availability, since can provide real-time guarantees (with
extra work!)

• Can protect against arbitrary failure where machines feed wrong infor-
mation (Byzantine Failure)

9.2 Issues in Replication

A collection of replicas should behave as if state was stored at one single site

• When accessed by client, view should be consistent

• Replication should be transparent - client unaware that servers are replicated

If we are providing a replica service, replica can be passive or active.

1



9.2.1 Passive Replication

Passive replicas are standbys, to maintain service on failure. No performance im-
provement.

Standbys must monitor and copy state of active server
Provide availability in simple manner.
Used for highly available systems eg space applications

9.3 Consistency

• Clients can modify resource on any of the replicas.

• What happens if another client requests resource before replica has informed
others of modification, as in cache consistency in distributed file systems?

• Answer depends upon application...

9.3.1 Example Distributed Bulletin Board System (BBS)

Replica
Manager Replica

Manager

Replica
Manager

client

front
endclient

front
end

• Users read and submit articles through Front End.

• Articles replicated across a number of servers

• Front Ends can connect to any server

• Servers propagate articles between themselves so that all servers hold copies
of all articles.

• User membership of a given bbs is tightly controlled.

Questions on BBS:

• How should messages be passed between replicas?

• Should order of presentation of articles to clients be the same across all repli-
cas? Are weaker ordering semantics possible?

• When a client leaves bbs group, can they see articles submitted after they
have left? Is this desireable?

• What should happen when replicas are temporarily partitioned?

2



9.4 Updating Server state

Clients read and update state at any of the replicated servers eg submit messages
in bbs. To maintain consistency, three things are important

Multicast communication Messages delivered to all servers in the group repli-
cating data

Ordering of messages Updates occur in the same “order” at each server

Failure recovery When servers or the network fails, and comes back, the replicas
must be able to regain consistency. Done through Voting and Transactions
(later in course)

9.5 Multicast and Process Groups

A Process Group: a collection of processes that co-operate towards a common
goal.

Multicast communication: One message is sent to the members of a process
group

Idea: Instead of knowing address of process, just need to know an address
representing the service. Lower levels take care of routing messages.

Useful for:

Replicated Services One update message goes to all replicas, which perform
identical operations. Reduces communication costs.

Locating objects in distributed services Request for object goes to all pro-
cesses implementing service, but only process holding object replies.

9.5.1 Group Services

Maintenance of group information is a complex function of the name service (for
tightly managed groups)

Create Group Create a group identifier that is globally unique.

Join Group Join a group. Requires joining process information to be disseminated
to message routing function. May require authentication and notification of
existing members.

Leave Group Remove a process from a group. May require authentication, may
occur as a result of failure or partition. Need to notify message routing func-
tion, may notify other members.

Member List Supply the list of processes within a group. Needed for reliable
message delivery, may require authentication.

9.6 Message Ordering

If two processes multicast to a group, the messages may be arbitrarily ordered at
any member of the group.

Process P1 multicasts message a to a group comprising processes P1, P2, P3
and P4.

Process P2 multicasts message b to the same group
The order of arrival of a and b at members of the group can be different.

3



P3P1 P2 P4
a

a
b

b a

b

b

a

9.6.1 Ordering example

P1 P3P2
create object

delete object

create
object

delete
object

• Order of operations may be important - delete object, create object.

• If delete object arrives before create object, then operation not completed

9.6.2 Ordering Definitions

Various definitions of order with increasing complexity in multicasting protocol

FIFO Ordering Messages from one process are processed at all group members
in same order

Causal Ordering All events which preceded the message transmission at a process
precede message reception at other processes. Events are message receptions
and transmissions.

Total Ordering Messages are processed at each group member in the same order.

Sync Ordering For a sync ordered message, either an event occured before mes-
sage reception at all processes, or after message. Other events may be causally
or totally ordered.

4



9.6.3 FIFO ordering

Achieved by process adding a sequence number to each message.
Group member orders incoming messages with respect to sequence number.
Applicable when each process state is separate, or operations don’t modify state,

just add incremental updates or read.

9.6.4 Total Ordering

When several messages are sent to a group, all members of the group receive the
messages in the same order.

Two techniques for implementation:

Sequencer Elect a special sequencing node. All messages are sent to sequencer,
who then sends messages onto replicas. FIFO ordering from sequencer guaran-
tees total ordering. Suffers from single point of failure (recoverable by election)
and bottleneck.

Holdback Queue Received messages are not passed to the application immedi-
ately, but are held in a holdback queue until the ordering constraints are met.

Sequence Number Negotiation Sender negotiates a largest sequence number
with all replicas.

1. Replicas store largest final sequence number yet seen Fmax, and largest pro-
posed sequence number Pmax

2. Sender sends all replicas message with temporary ID.

3. Each Replica i replies with suggested sequence number of max(Fmax, Pmax)+
1. Suggested sequence number provisionally assigned to message and message
placed in holdback queue (ordered with smallest sequence number at front)

4. Sending site chooses largest sequence number and notifies replicas of final
sequence number. Replicas replace provisional sequence number with final
sequence number.

5. When item at front of queue has an agreed final sequence number, deliver the
message.

9.6.5 Causal Ordering

“Cause” means “since we don’t know application, messages might have causal or-
dering”

a and b are events, generally sending and receiving of messages.
We define the causal relation, a → b, if

1. if a and b are events at the same process, a → b implies a happened before b

2. if a is a message sent by process P1 and b is the arrival of the same message
at P2, then a → b is true

In bulletin board, an article titled “re: Multicast Routing” in repsonse to an
article called “Multicast Routing” should always come after, even though may be
received before the initial article.

5



9.6.6 CBCAST - Causal ordering in ISIS

ISIS is a real commercial distributed system, based on process groups.
Causal ordering for multicast within a group is based around Vector Timestamps
The vector V T has an identifier entry for each member of the group, typically

an integer.
Vector timestamps have one operation defined
merge(u, v)[k] = max(u[k], v[k]), for k = 1..n
Incoming messages are placed on a holdback queue, until all messages which

causally precede the message have been delivered.

CBCAST Implementation

1. All processes pi initialise the vector to zero

2. When pi multicasts a new message, it first increments V Ti[i] by 1; it piggy-
backs vt = V Ti on the message

3. Messages are delivered to the application in process Pj when

• The message is the next in sequence from pi i.e. vt[i] = V Tj [i] + 1

• All causally prior messages that have been delivered to pi must have been
delivered to pj , i.e. V Tj [k] ≥ vt[k] for k 6= i.

4. When a message bearing a timestamp vt is delivered to pj , pj ’s timestamp is
updated as V Tj = merge(vt, V Tj)

In words

• Incoming vector timestamp is compared to current timestamp.

• If conditions for delivery to process not met, then message placed on holdback
queue.

• When an incoming message is delivered, the timestamp is updated by the
merge.

• Examine all messages in the holdback queue to see if they can be delivered.

• CBCAST requires reliable delivery.

Causal Example

delivered immediately

(1,0,0)

(1,1,0)
Message delayed
on holdback queue

Message on holdback queue
(1,1,0) can now be delivered

P3P1 P2

6



Group View Changes

• When group membership changes, what set of messages should be delivered
to members of changed group?

• What happens to undelivered messages of failed members?

• What messages should new member get?

• ISIS solves by sending a sync ordered message announcing that the group view
has changed. Messages thus belong to a particular group view.

• Use coordinator to decide which messages belong to which view.

9.7 Summary

• Replication of services and state increase availability

• Replication increases performance

• Replication increases Fault tolerance

• To maintain consistency, multicast updates to all replicas

• Use sequence numbers to maintain FIFO ordering

• Use Vector Timestamps to maintain Causal Ordering

• Use elected sequencers or identifier negotiation to maintain total ordering

7


