
11 Concurrency Control and Transactions

• Problem restatement

• Locking

•Optimistic control

• Timestamping

11.1 Why concurrency control?

• To increase performance, multiple
transactions must be able to carry
on work simultaneously...

• ...but if data is shared, then can
lead to problems such as lost up-
dates and inconsistent retrievals.

• So we must ensure schedules of ac-
cess to data for concurrent trans-
actions are computationally equiv-
alent to a serial schedule of the
transactions.

1



11.2 Locking

•As in operating systems, locks con-
trol access for different clients

•Granularity of data locked should
be small so as to maximise concur-
rency, with trade-off against com-
plexity.

• To prevent intermediate leakage,
once lock is obtained, it must be
held till transaction commits or aborts

11.2.1 Conflict rules

• Conflict rules determine rules of
lock usage

• If operations are not in conflict,
then locks can be shared ⇒ read
locks are shared

•Operations in conflict imply oper-
ations should wait on lock⇒ write
waits on read or write lock, read

2



waits on write lock

• Since can’t predict other item us-
age till end of transactions, locks
must be held till transaction com-
mits or aborts.

• If operation needs to do another
operation on same data then pro-
motes lock if necessary and possi-
ble - operation may conflict with
existing shared lock

11.2.2 Rules for strict two phase locking

1. When operation accesses data item
within transaction

(a) If item isn’t locked, then server
locks and proceeds

(b) If item is held in a conflicting
lock by another transaction, trans-
action must wait till lock released

(c) If item is held by non-conflicting

3



lock, lock is shared and opera-
tion proceeds

(d) If item is already locked by same
transaction, lock is promoted if
possible (refer to rule b)

2. When transaction commits or aborts,
locks are released

11.2.3 Locking Implementation

• Locks generally implemented by a
lock manager

lock(transId,DataItem,LockType)
Lock the specified item if possi-
ble, else wait according to rules
above

unLock(transId) Release all locks
held by the transaction

• Lock manager generally multi-threaded,
requiring internal synchronisation

•Heavyweight implementation

4



11.2.4 Example

Transactions T and U.

• T: i.read(), j.write(44)

•U: i.write(55),j. read(), j.write(66)

Question What are the possible sched-
ules allowed under strict locking?
Question Are there any schedules

computationally equivalent to a se-
rial schedule which are disallowed?

11.2.5 Deadlocks

• Locks imply deadlock, under fol-
lowing conditions

1. Limited access (eg mutex or fi-
nite buffer)

2. No preemption (if someone has
resource can’t take it away)

3. Hold and wait. Independent threads
must possess some of its needed

5



resources and waiting for the re-
mainder to become free.

4. Circular chain of requests and
ownership.

•Most common way of protecting
against deadlock is through time-
outs. After timeout, lock becomes
vulnerable and can be broken if
another transaction attempts to gain
lock, leading to aborted transac-
tions

11.2.6 Drawbacks of Locking

• Locking is overly restrictive on the
degree of concurrency

•Deadlocks produce unnecessary aborts

• Lock maintenance is an overhead,
that may not be required

6



11.3 Optimistic Concurrency Control

•Most transactions do not conflict
with each other

• So proceed without locks, and check
on close of transaction that there
were no conflicts

– Analyse conflicts in validation
process

– If conflicts could result in non-
serialisable schedule, abort one
or more transactions

– else commit

11.3.1 Implementation of Optimistic Concurrency Control

Transaction has following phases

1. Read phase in which clients read
values and acquire tentative ver-
sions of items they wish to update

2. Validation phase in which opera-
tions are checked to see if they are

7



in conflict with other transactions
- complex part. If invalid, then
abort.

3. If validated, tentative versions are
written to permanence, and trans-
action can commit (or abort).

11.3.2 Validation approaches

•Validation based upon conflict rules
for serialisability

•Validation can be either against
completed transactions or active
transactions - backward and for-
ward validation.

• Simplify by ensuring only one trans-
action in validation and write phase
at one time

• Trade-off between number of com-
parisons, and transactions that must
be stored.

8



Forward Validation

1. A transaction in validation is com-
pared against all transactions that
haven’t yet committed

2. Writes may affect ongoing reads

3. The write set of the validating trans-
action is compared against the read
sets of all other active transactions.

4. If the sets conflict, then either abort
validating transaction, delay vali-
dation till conflicting transaction
completes, or abort conflicting trans-
action.

Backward validation

1. Writes of current transaction can’t
affect previous transaction reads,
so we only worry about reads with
overlapping transactions that have
committed.

9



2. If current read sets conflict with
already validated overlapping trans-
actions write sets, then abort val-
idating transaction

11.4 Timestamping

Operates on tentative versions of data

• Each Transaction receives global
unique timestamp on initiation

• Every object, x, in the system or
database carries the maximum (ie
youngest) timestamp of last trans-
action to read RTM(x)1 and max-
imum of last transaction to write
WTM(x)2

• If transaction requests operation
that conflicts with younger trans-
action, older transaction restarted
with new timestamp.

1Read Timestamp Maximum
2Write Timestamp Maximum

10



• Transactions committed in order
of timestamps, so a transaction may
have to wait for earlier transaction
to commit or abort before com-
mitting.

• Since tentative version is only writ-
ten when transaction is commit-
ted, read operations may have to
wait until the last transaction to
write has committed.

An operation in transaction Ti with
start time TSi is valid if:

• The operation is a read operation
and the object was last written by
an older transaction ie TSi > WTM(x).
If read permissible, RTM(x) =
MAX(TSi, RTM(x))

• The operation is a write opera-
tion and the object was last read
and written by older transactions
ie TSi > RTM(x) and TSi >

11



WTM(x). If permissible, WTM(x) =
TSi

11.5 Summary

• Locks are commonest ways of pro-
viding consistent concurrency

•Optimistic concurrency control and
timestamping used in some systems

• But, consistency in concurrency is
application dependent - for shared
editors, people may prefer to trade
speed of execution against possi-
bilities of conflict resolution. Prob-
lems can occur with long term net-
work partition. Approaches based
on notification and people resolu-
tion becoming popular.

12


