
12 Distributed Transactions

• Models for distributed transactions

• Attaining distributed commitment

• Distributed Concurrency Control

12.1 Single Server Transactions

resource

client1

client2

clientN

Transaction Manager

server

transaction 1

transaction 2

transaction N

• Till now, transactions have referred to multiple clients, single server.

• How do we have multiple clients interacting with multiple servers? eg com-
plicated funds transfer involving different accounts from different banks?

• Generalise transactions to distributed case...

12.2 Distributed Transactions

12.2.1 Distributed Transaction Requirements

General characteristics of distributed systems

• Independent Failure Modes

• No global time

• Inconsistent State

Need to consider:

• how to achieve distributed commitment (or abort)

• how to achieve distributed concurrency control

1

12.2.2 Models

client

X

Y

Z

client

T

T1

T2

T11

T12

T21

T22

Z

X

Y

M

N

P

Simple Distributed model Nested Transaction

• If client runs transactions, then each transaction must complete before pro-
ceeding to next

• If transactions are nested, then transactions at same level can run in parallel

• Client uses a single server to act as coordinator for all other transactions. The
coordinator handles all communication with other servers

Question: What are the requirements of transaction ids?

12.3 Atomic Commit Protocols

• Distribution implies independent failure modes, ie machine can fail at any
time, and others may not discover.

• If one phase commit, client requests commit, but one of the server may have
failed - no way of ensuring durability

• Instead, commit in 2 phases, thus allowing server to request abort.

12.3.1 2 Phase Commit

• One coordinator responsible for initiating protocol.

• Other entities in protocol called participants.

• If coordinator or participant unable to commit, all parts of transaction are
aborted.

• Two phases

Phase 1 Reach a common decision

Phase 2 Implement that decision at all sites

2 Phase Commit Details

1. Phase 1 The coordinator sends a Can Commit? message to all participants
in transaction.

2. Participants reply with vote yes or no. If vote is no participant aborts imme-
diately.

2

3. Phase 2 Coordinator collects votes including own:

(a) If all votes are yes, coordinator commits transaction and sends DoCom-
mit to all participants.

(b) Otherwise transaction is aborted, and coordinator sends abortTransac-
tion to all participants.

4. When a participant recieves DoCommit, it commits its part of the transaction
and confirms using HaveCommited

coordinator

1. Prepared to commit

(waiting for votes)

participant

2. Prepared to commit
 (uncertain)

3. Committed
 (or aborted)

4. Commit

CanCommit?

Yes

DoCommit

HaveCommitted

5. Done

2 Phase Commit Diagram Note:

• If participant crashes after having voted to commit, it can ask coordinator
about results of vote.

• Timeouts are used when messages are expected.

• Introduces new state in transaction Prepared to commit.

12.4 Distributed Concurrency Control

12.4.1 Locking

• Locking is done per item, not per client.

• No problems generalising to multiple servers...

• ...except in dealing with distributed deadlock

• Same techniques as usual, but interesting dealing with distributed deadlock
detection.

12.4.2 Optimistic Concurrency Control

• Need to worry about distributed validation

• Simple model of validation had only one transaction being validated at a
time - can lead to deadlock if different cordinating servers attempt to validate
different transaction.

3

• Also need to validate in correct serialisable order.

• One solution is to globaly only allow one transaction to validate at a time.

• Other solutions is to validate in two phases with timestamp allocation - local,
then global to enforce ordering.

12.4.3 Timestamping

• If clocks are approximately synchronised, then timestamps can be
< localtimestamp, coordinatingserverid >
pairs, and an ordering defined upon server ids.

12.5 Summary

• Nested Transactions are best model for distributed transactions

• Two Phase Commit protocol suitable for almost all case

• Distributed Concurrency control is only slightly more diffcult than for single
server case

4

