
4 Operating System Support

Aim: What do we need from an operating system to support distributed sys-
tems?

Main Points:

Layering An organisational principle for modular communications

Protocol techniques Acknowedgements, timers, windows etc

Operating Systems Abstractions Processes, threads, sockets, daemons

Basic service provided by network - variable loss, bandwidth, latency.
Need to layer other services on top.

4.1 Protocols

Protocol: Agreement between two (or more) parties as to how information is
to be transmitted.

At minimum, will include the interpretation of the bits in the packet.
May include finite state machines movements between senders and receivers.
Protocol information in headers (or trailers) at front of packets.

4.2 Layering

Networks are used to transmit messages between processes.
Protocols used to give messaging functionality

Packets in reality Messaging abstraction
Limited Size Arbitrary Size
Unordered (sometimes) ordered
unreliable reliable
machine to machine process to process
Local Area Net routed anywhere
Asynchronous Synchronous
Insecure Secure

Table 1: Packets and messages

4.2.1 Reason for Layering

• Easier to build functions with higher abstractions.

• Define ordering of abstractions to simplify necessary functions

• Provides modularity

1



Layers

Applications

Datagrams (UDP) or Streams (TCP)

UDP or TCP packets

Transport

Internet

IP packets

Network Interface

Network−specific frames

Underlying Network

Message

Application Message

TCP header 

IP Header

Ethernet header

data

data

data

TCP

TCPIP

Ethernet Frame

4.2.2 Layering in the Internet

4.2.3 The Headers in an Ethernet Frame

4.3 Reliable Transmission: The Basic Techniques

These are some of the basic protocol techniques that are used in lower layer
protocols.

They are often reused in higher level protocols.

4.3.1 Labelling

•

• Split up message into smaller chunks.

• Place label in header indicating which part of message it is.

eg “abcdefg” → 1 of 3 “abc”, 2 of 3 “def”, 3 of 3 “g”

• Labels typically sequential fixed field integers

4.3.2 Acknowledging

To tell the sender data has been received correctly (after checking checksums
etc), use acknowledgements.

2



• When the data packet is received, send an acknowledgement message back
to the sender.

• Acknowledgement message contains the label of the message being ac-
knowledged.

• Acknowledgement of a packet can sometimes implicitly acknowledge re-
ception of all previously sent packets (Go back N)

• Multiple labels can be sent in the acknowledgement (Selective acknowl-
edgement)

• If data is being returned to the sender, acknowledgement information can
be piggybacked on return data packet. Acknowledgement information is
part of the header eg TCP

4.3.3 Timeouts and retransmission

• The sender measures the expected time between sending a message and
receiving an acknowledgement

• Sender starts a timer after sending a packet.

• If the timer expires before an acknowledgement is received, the packet is
resent

• Receiver must be able to deal with duplicate packets

Questions

1. How can the expected round trip time be measured?

2. What value should the time be set to?

4.3.4 Negative Acknowledgement

Sometimes, the pattern of data exchange makes it easier to use Negative ac-
knowledgements

• If data-flow is constant, receiver knows when packet is expected.

• Can send an negative acknowledgement (NAK ) indicating expected mes-
sages hasn’t been received

4.3.5 Windowing

• To increase utilization, and decrease acknowledgement overhead, multiple
packets can be sent before the sender waits for an acknowledgement

• The number of packets that can be sent is the window.

• Window needs to be fixed to avoid overloading network or receiver.

3



• Careful adjustment of the window size is key to avoiding and controlling
congestion and dyanmic performance (slow start in TCP).

4.3.6 State Synchronization

• Both ends of the protocol exchange typically need to agree on some start-
ing state

• In labelling systems, both ends need to agree on initial label value

• Use a handshake of messages containing suggestions for state, and then
return messages agreeing the value of the state.

4.4 Group Communication

• Often, sender wants the same packet replicated to multiple receivers eg
game updates, mirroring etc

• Network offers multicast to provide this functionality.

• Receivers join a particularly addressed group - class D addresses in IP,
1110XXXX.XXXXXXXX.XXXXXXXX.XXXXXXXX

• Network conspires to deliver packets sent to this address efficiently to all
receivers.

• Available in Local Area, not always available in wide area (unfortunately).

4.5 Sockets

• Sockets are the near-universal abstraction for using TCP and UDP

• Provides data structures for holding addresses and other context informa-
tion, and methods for sending and receiving data.

• Clients use sockets to talk to servers, often known as daemons1

4.5.1 Operating Systems Background

4.5.2 Socket Usage: Single threaded TCP Server

try {
Create a socket

1from the Hackers Dictionary
daemon /day’mn/ or /dee’mn/ n.
[from the mythological meaning, later rationalized as the acronym ‘Disk And Execution

MONitor’] A program that is not invoked explicitly, but lies dormant waiting for some condi-
tion(s) to occur. The idea is that the perpetrator of the condition need not be aware that a
daemon is lurking (though often a program will commit an action only because it knows that
it will implicitly invoke a daemon). [...] Daemons are usually spawned automatically by the
system, and may either live forever or be regenerated at intervals.

4

http://www.tuxedo.org/~esr/jargon/


Threads of Control

Address 
Space

(Thread stacks,

heap, 

 code etc)

File and socket descriptors

Process Process

Process

Process

Socket

Socket

TCP UDP

IP

Network Interfaces

User Space

Operating System
Kernel

Process

...

Bind the address to the socket
loop {
Accept connections on socket
Receive data on connection
do some work
Send Response
Close connection on socket

}
} catch and deal with any exceptions

4.5.3 Socket Usage: TCP client

try {
Create a socket
Bind the address of the server to the socket
// Allows the operating system to choose port
// and address for the receiver
Open connection on socket // Connection setup
Send data on connection
Wait for Response
Close connection on socket

} catch and deal with any exceptions

4.5.4 Gotchas

• The chunk of data written to a socket is not necessarily read as a chunk
for the remote socket - packetisation may fragment the chunks.

5



• Both ends have to agree on how to interpret the data written and read
from the socket - the concrete syntax of the data stream.

• Data interpretation is through application standards defining bit fields eg
the RFCs defining HTTP, SMTP, FTP etc

• Interpreting data can require very messy bit manipulation.

4.5.5 Socket Usage: Concurrent TCP Server

• A single threaded server can only deal with one client at a time

• This is often unacceptable in terms of performance eg web servers

try {
Create a socket
Bind the address to the socket
loop {
Accept connections on socket
spawn a worker thread to deal with connection

}
} catch and deal with any exceptions

and the worker thread goes

try {
Receive data on Connection
Do some work
Send response
Close Connection

} catch and deal with any exceptions

4.5.6 Thread Pools

• Spawning a thread for every connection can consume too many resources
if connections come too quickly

• An alternative approach is to have a fixed size pool of threads

• When connection is received pass the connection to the next available
thread from pool

• When all the threads are busy, server blocks and does’t accept more con-
nections

6



4.6 Request and Response

• Design patterns for client server communications are very stereotyped.

• Can we automatically generate client server code?

• Yes!

• We can model a server as an object waiting for methods to be called

• Client then obtains reference to object and calls methods

• Distributed Object Systems and Remote Method Invocation (next lecture)

4.7 Conclusion

• Layering is a modularisation approach allowing services to improve upon
the services offered by lower services.

• Protocol techniques qfrom lower layers are often re-used again and again
(see the “End to End Argument” paper.

• Sockets encapsulate TCP/UDP endpoints and can be used to construct
clients and servers.

7

http://www.cogs.susx.ac.uk/users/ianw/teach/papers/endToEnd.pdf

	Operating System Support
	Protocols
	Layering
	Reason for Layering
	Layering in the Internet
	The Headers in an Ethernet Frame

	Reliable Transmission: The Basic Techniques
	Labelling
	Acknowledging
	Timeouts and retransmission
	Negative Acknowledgement
	Windowing
	State Synchronization

	Group Communication
	Sockets
	Operating Systems Background
	Socket Usage: Single threaded TCP Server
	Socket Usage: TCP client
	Gotchas
	Socket Usage: Concurrent TCP Server
	Thread Pools

	Request and Response
	Conclusion


