
5 Distributed Objects: The Java Approach

Main Points

• Why distributed objects

• Distributed Object design points

• Java RMI

• Dynamic Code Loading

5.1 What’s an Object?

An Object is an autonomous entity having state manipulable only by a set of
methods

public interface BankAccount extends Remote {
public void deposit(float amount)

throws RemoteException;

public void withdraw(float amount)
throws RemoteException;

public float balance()
throws RemoteException;

}

5.2 Why Distributed Objects?

Distributed Systems multiplies complexity

• multiple machines

• multiple people

• multiple organisations

Large amount of communication between system designers in producing dis-
tributed systems.

Problem is how to manage complexity at design time

5.2.1 Software Engineering

Software design should produce well-engineered software which satisfies require-
ments:

• Comprehensible, so that its easy to maintain and modify. Easier to test

• Reusable, cheaper than rebuilding and fewer bugs
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Objects as a basis for distributed system give you techniques to manage com-
plexity:

Abstraction hide unnecessary details, so keep system comprehensible

Encapsulation allows elements to be extracted⇒ comprehensibility and reusabil-
ity

Concurrency control allows easy management of concurrent activities

5.3 How to build Distributed Object Systems

What are the various entities?

• Programmers using existing services

• Programs running on various machines offering services

• Packets using RPC protocol to invoke methods in programs

How do we communicate between these things?

programmers programs

packets

Interface
Definition
Language

& rpc protocolsrpc system
Concrete Syntax

5.4 Objects and RPC systems

No real distinction between distributed method invocation and rpc systems.
Pure object systems

• Provides dynamic binding through name service, possibly with migration
and other features

• Protocol processing can be part of OS, allows asynchronous processing
when appropriate
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client server

• Examples include Java Remote Method Invocation (RMI), Corba

Static rpc systems such as Sun rpc

• Binding of services to machine by programmer

• Synchronous processing since protocol processing in user thread

5.5 Java RMI

• Java has RPC built in as Remote Method Invocation

• No separate IDL - uses Java for interface definition

5.5.1 Remote Interfaces

• An interface in Java specifies a set of methods that the object implement-
ing that interface will provide

• Java RMI uses interfaces which extend java.rmi.remote as a way of spec-
ifying which methods can be invoked remotely.

public interface Foo extends Remote {
public void myRemoteMethod() throws RemoteException;

}

public Bar implements Foo extends RemoteObject {
...
public void myRemoteMethod() throws RemoteException {

...
}
...

}

5.5.2 Remote Objects and Remote References

• To use a remote object, an object must acquire a remote reference.

• In Java, a remote reference looks just like a normal object reference.

• To provide the necessary communications code, a remote object must
extend java.rmi.RemoteObject or one of its subclasses.

• Java will then provide remote references to the object when a reference as
passed out of the local JVM, typically as a method result, or as a field in
another result object.
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5.5.3 Stub files and generic method dispatch

• To invoke a remote method, code acting as a proxy or stub for the remote
object must run on the local machine.

• This code implements the appropriate interfaces, and marshalls the re-
quired method and arguments before sending them as a byte stream on a
TCP connection to the remote machine.

• At the remote end, a generic dispatcher uses reflection to determine which
method, and calls the invoke method from the reflection package to call
the method.

• Results or exceptions are then returned to the caller.

• rmic is the tool that generates the stub file from the implementation of
the remote object.

5.5.4 Java Distributed Garbage Collection

• Garbage collection (GC) is the removal of objects when they are no longer
needed.

• Single address space GC basically checks for references to objects. If no
references are found, the object is removed.

• Distributed GC is complicated because the traffic to check all possible
references is infeasible - references can be passed arbitrarily from machine
to machine.

• Instead, a remote reference corresponds to a proxy in the local machine.
The proxy informs the remote object it holds a reference.

• When the proxy is GCed, it tells the remote object that it no longer holds
a reference.

• When a remote object knows of zero proxies, it is a candidate for GC.

5.5.5 Parameter and Result Passing

• In local method invocation, object references are passed as arguments and
results - call-by-reference.

• In remote method invocation, only objects which are accessible remotely
can be passed by reference.

• Other objects must be passed by value - call-by-value - and instantiated
as copies on the remote machine

• Objects passed by value must be capable of being passed by value - ie they
must support the java.io.Serializable interface.
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• Serializable objects and their associated object graph can be flattened into
a byte array.

• If an object implements Serializable and all of its references are Serializ-
able, it can be passed by value

5.5.6 Remote Exceptions

• The number and probability of failure modes are far higher in distributed
systems.

• The designers of rmi decided to make this explicit by forcing programmers
to deal with a possible RemoteException in all remote invocations.

• Therefore all methods in a Remote interface must throw RemoteException.

5.5.7 RMIRegistry

• How do classes get the initial remote reference (bootstrap)?

• Remote objects bind themselves against a given textual name (eg myRe-
moteName) with the rmiregistry

• Objects can then resolve the name remotely by querying the rmiregistry.

• The rmiregistry will return a remote reference, and hidden from the pro-
grammer, the location of the relevant server class files - the interface and
the stub files.

5.5.8 Downloading of Classes

• The layout of classes and the bytecodes for implementing class methods
are detailed in class files.

• Class files are loaded on demand as objects are created or static methods
are invoked.

• Normal class loading comes through the default classloader, which searches
the CLASSPATH.

• Additonal classloaders can be used by programmers to load class files from
more exotic places.

5.5.9 ClassLoaders

• Rmi must allow the interface and stub files for remote objects to be down-
loaded over the network - uses the rmiClassLoader.

• Code loaded from arbitrary places is a security risk.
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• Java provides for a security policy to be defined for a classloader so that
all classes from that classloader can have their actions sandboxed.

• Typically, these actions are network access, file access, screen access etc,
and are specified in java policy files.

5.5.10 Activation

• Using an active thread continuously for an object which is accessed infre-
quently may be a poor use of resources - consider machines with millions
of objects.

• Instead, allow objects to change state from active to passive and vice versa.

• When active, they are normal remote objects.

• When passive, the object’s state is stored in persistent storage eg a file,
and responsibility for accepting calls to that object is handed over to an
activator.

• When the activator receives a call, it creates a new instance of the object
and instantiates its state from its stored state.

• Compare to the use of inetd to control typical Internet services such as
ftp, telnet etc.

5.6 Summary

• Described the key elements of Java RMI.

• Refer to these in using rmi to help in udnerstanding some of the problems
that occur.

• Other possible choices for distributed objects in the next lecture
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