
5 Distributed Objects: The Java Approach

Main Points

• Why distributed objects

• Distributed Object design points

• Java RMI

• Dynamic Code Loading

5.1 What’s an Object?

An Object is an autonomous entity having state manipulable only by a set of
methods

public interface BankAccount extends Remote {
public void deposit(float amount)

throws RemoteException;

public void withdraw(float amount)
throws RemoteException;

public float balance()
throws RemoteException;

}

5.2 Why Distributed Objects?

Distributed Systems multiplies complexity

• multiple machines

• multiple people

• multiple organisations

Large amount of communication between system designers in producing dis-
tributed systems.

Problem is how to manage complexity at design time

5.2.1 Software Engineering

Software design should produce well-engineered software which satisfies require-
ments:

• Comprehensible, so that its easy to maintain and modify. Easier to test

• Reusable, cheaper than rebuilding and fewer bugs

1



Objects as a basis for distributed system give you techniques to manage com-
plexity:

Abstraction hide unnecessary details, so keep system comprehensible

Encapsulation allows elements to be extracted⇒ comprehensibility and reusabil-
ity

Concurrency control allows easy management of concurrent activities

5.3 How to build Distributed Object Systems

What are the various entities?

• Programmers using existing services

• Programs running on various machines offering services

• Packets using RPC protocol to invoke methods in programs

How do we communicate between these things?

programmers programs

packets

Interface
Definition
Language

& rpc protocolsrpc system
Concrete Syntax

5.4 Objects and RPC systems

No real distinction between distributed method invocation and rpc systems.
Pure object systems

• Provides dynamic binding through name service, possibly with migration
and other features

• Protocol processing can be part of OS, allows asynchronous processing
when appropriate

2



client server

• Examples include Java Remote Method Invocation (RMI), Corba

Static rpc systems such as Sun rpc

• Binding of services to machine by programmer

• Synchronous processing since protocol processing in user thread

5.5 Java RMI

• Java has RPC built in as Remote Method Invocation

• No separate IDL - uses Java for interface definition

5.5.1 Remote Interfaces

• An interface in Java specifies a set of methods that the object implement-
ing that interface will provide

• Java RMI uses interfaces which extend java.rmi.remote as a way of spec-
ifying which methods can be invoked remotely.

public interface Foo extends Remote {
public void myRemoteMethod() throws RemoteException;

}

public Bar implements Foo extends RemoteObject {
...
public void myRemoteMethod() throws RemoteException {

...
}
...

}

5.5.2 Remote Objects and Remote References

• To use a remote object, an object must acquire a remote reference.

• In Java, a remote reference looks just like a normal object reference.

• To provide the necessary communications code, a remote object must
extend java.rmi.RemoteObject or one of its subclasses.

• Java will then provide remote references to the object when a reference as
passed out of the local JVM, typically as a method result, or as a field in
another result object.

3



5.5.3 Stub files and generic method dispatch

• To invoke a remote method, code acting as a proxy or stub for the remote
object must run on the local machine.

• This code implements the appropriate interfaces, and marshalls the re-
quired method and arguments before sending them as a byte stream on a
TCP connection to the remote machine.

• At the remote end, a generic dispatcher uses reflection to determine which
method, and calls the invoke method from the reflection package to call
the method.

• Results or exceptions are then returned to the caller.

• rmic is the tool that generates the stub file from the implementation of
the remote object.

5.5.4 Java Distributed Garbage Collection

• Garbage collection (GC) is the removal of objects when they are no longer
needed.

• Single address space GC basically checks for references to objects. If no
references are found, the object is removed.

• Distributed GC is complicated because the traffic to check all possible
references is infeasible - references can be passed arbitrarily from machine
to machine.

• Instead, a remote reference corresponds to a proxy in the local machine.
The proxy informs the remote object it holds a reference.

• When the proxy is GCed, it tells the remote object that it no longer holds
a reference.

• When a remote object knows of zero proxies, it is a candidate for GC.

5.5.5 Parameter and Result Passing

• In local method invocation, object references are passed as arguments and
results - call-by-reference.

• In remote method invocation, only objects which are accessible remotely
can be passed by reference.

• Other objects must be passed by value - call-by-value - and instantiated
as copies on the remote machine

• Objects passed by value must be capable of being passed by value - ie they
must support the java.io.Serializable interface.

4



• Serializable objects and their associated object graph can be flattened into
a byte array.

• If an object implements Serializable and all of its references are Serializ-
able, it can be passed by value

5.5.6 Remote Exceptions

• The number and probability of failure modes are far higher in distributed
systems.

• The designers of rmi decided to make this explicit by forcing programmers
to deal with a possible RemoteException in all remote invocations.

• Therefore all methods in a Remote interface must throw RemoteException.

5.5.7 RMIRegistry

• How do classes get the initial remote reference (bootstrap)?

• Remote objects bind themselves against a given textual name (eg myRe-
moteName) with the rmiregistry

• Objects can then resolve the name remotely by querying the rmiregistry.

• The rmiregistry will return a remote reference, and hidden from the pro-
grammer, the location of the relevant server class files - the interface and
the stub files.

5.5.8 Downloading of Classes

• The layout of classes and the bytecodes for implementing class methods
are detailed in class files.

• Class files are loaded on demand as objects are created or static methods
are invoked.

• Normal class loading comes through the default classloader, which searches
the CLASSPATH.

• Additonal classloaders can be used by programmers to load class files from
more exotic places.

5.5.9 ClassLoaders

• Rmi must allow the interface and stub files for remote objects to be down-
loaded over the network - uses the rmiClassLoader.

• Code loaded from arbitrary places is a security risk.

5



• Java provides for a security policy to be defined for a classloader so that
all classes from that classloader can have their actions sandboxed.

• Typically, these actions are network access, file access, screen access etc,
and are specified in java policy files.

5.5.10 Activation

• Using an active thread continuously for an object which is accessed infre-
quently may be a poor use of resources - consider machines with millions
of objects.

• Instead, allow objects to change state from active to passive and vice versa.

• When active, they are normal remote objects.

• When passive, the object’s state is stored in persistent storage eg a file,
and responsibility for accepting calls to that object is handed over to an
activator.

• When the activator receives a call, it creates a new instance of the object
and instantiates its state from its stored state.

• Compare to the use of inetd to control typical Internet services such as
ftp, telnet etc.

5.6 Summary

• Described the key elements of Java RMI.

• Refer to these in using rmi to help in udnerstanding some of the problems
that occur.

• Other possible choices for distributed objects in the next lecture

6


	Distributed Objects: The Java Approach
	What's an Object?
	Why Distributed Objects?
	Software Engineering

	How to build Distributed Object Systems
	Objects and RPC systems
	Java RMI
	Remote Interfaces
	Remote Objects and Remote References
	Stub files and generic method dispatch
	Java Distributed Garbage Collection
	Parameter and Result Passing
	Remote Exceptions
	RMIRegistry
	Downloading of Classes
	ClassLoaders
	Activation

	Summary


