6

THE OPERATING SYSTEM
MACHINE LEVEL

Level 3 Operating system machine level

Operating system

Level 2 Instruction set architecture level

Microprogram or hardware

Level 1 Microarchitecture level

Figure 6-1. Positioning of the operating system machine level.

Address space
Address [A

v

Mapbin 4K Main
8191 — % memory

4096 —~ — ~— 4095
-0

0— -

Figure6-2. A mapping in which virtual addresses 4096 to
8191 are mapped onto main memory addresses O to 4095.

b))

Page Virtual addresses

15 61440 — 65535

14 57344 — 61439

13 53248 — 57343

12 49152 — 53247

11 45056 — 49151

10 40960 — 45055 Bottom 32K of
9 36864 — 40959 Page main memory
8 32768 — 36863 frame Physical addresses
7 28672 — 32767 7 28672 — 32767
6 24576 — 28671 6 24576 — 28671
5 20480 — 24575 5 20480 — 24575
4 16384 — 20479 4 16384 — 20479
3 12288 — 16383 3 12288 — 16383
2 8192 — 12287 2 8192 — 12287
1 4096 — 8191 1 4096 — 8191
0 0 — 4095 0 0 — 4095

(@)

(b)

Figure 6-3. (a) The first 64K of virtual address space divided
into 16 pages, with each page being 4K. (b) A 32K main
memory divided up into eight page frames of 4K each.

—~— 15-hit Memory address ——

\Ggggl 1|1{o|ofo|o|o[o]o|o]1]o[1|1|0 %étirs’?etr
——
Page A
table
Present/absent LA A
bit
15 >
14
13
12
11
10
9
8
7
6
5
: -/
3 |1]| 110
2
1
0
o|o|o|o|oofo[o[o[o[o[o]o|o|o|o|o|o|1|1[o[o[o[o[o[o]o]1]|0]|1]|1]|0 'rgzgter

~————20-bit virtual page—»Filz-bit offset——

~ 32-bit virtual address

Figure 6-4. Formation of amain memory address from avirtual address.

Page table

Virtual Page
page frame

1510f O

1411 4 \

13|10 O

12|10 O

1111] 5 N

10|0f O

9 [0 O _ Page
s [1] 3 < Main memory frame
7 10 0 Virtual page 6 | 7

6 |1 7 Virtual page 5 | 6
511 6 Virtual page 11| 5

4 10 O Virtual page 14| 4
3|1 2 ~\ Virtual page 8 | 3
210 0 Virtual page 3 | 2
11 O ~><: Virtual page 0 | 1
0|1 1 - Virtual page 1 | O

\

1 = Present in main memory
0 = Absent from main memory

Figure 6-5. A possible mapping of the first 16 virtual pages
onto amain memory with eight page frames.

Virtual page 7

Virtual page 6

Virtual page 7

Virtual page 7

Virtual page 5

Virtual page 6

Virtual page 6

Virtual page 4

Virtual page 5

Virtual page 5

Virtual page 3

Virtual page 4

Virtual page 4

Virtual page 2

Virtual page 3

Virtual page 3

Virtual page 1

Virtual page 2

Virtual page 2

Virtual page 0

Virtual page 1

Virtual page 0

(@)

Virtual page 8

Virtual page 8

(b)

()

Figure 6-6. Failure of the LRU agorithm.

Virtual address space

Free {

Currently used {

Call
stack

T

Parse
tree

T

Constant

table

A

Source

text

}

Symbol
table

|

Address space
allocated to the
call stack

Figure 6-7. In a one-dimensional address space with growing
tables, one table may bump into another.

20K

16K

12K

8K

4K

_Symbol
table

Source Call

- — text L Parse L stack
Constant tree
table
Segment Segment Segment Segment Segment
0 1 2 3 4

Figure 6-8. A segmented memory allows each table to grow or

shrink independently of the other tables.

Consideration Paging Segmentation
Need the programmer be aware of it? No Yes
How many linear addresses spaces are there? |1 Many
Can virtual address space exceed memory size? Yes Yes
Can variable-sized tables be handled easily? No Yes
Why was the technique invented? To simulate large | To provide multiple
memories address spaces

Figure 6-9. Comparison of paging and segmentation.

10K

Segment 5
(4K)

Segment 6
(4K)

Segment 2
(5K)

(3K) (3K)
Segment 4 Segment 4
(7K) (7K) Segment 5 Segment 5
(4K) (4K)
(4K)
Segment 3 Segment 3 Segment 3
(8K) (8K) (8K) Segment 6
(4K)
Segment 2 Segment 2 Segment 2 Segment 2
(5K) (5K) (5K) (5K)
(3K) (3K) (3K)
Segment 1
(8K) Segment 7 Segment 7 Segment 7
(5K) (5K) (5K)
Segment 0 Segment 0 Segment 0 Segment O
(4K) (4K) (4K) (4K)

Segment 7
(5K)

(@)

(b)

(©)

(d)

Segment O
(4K)

(e)

Figure 6-10. (a)-(d) Development of external fragmentation

(e) Removal of the external fragmentation by compaction.

Descriptor
Page frame
Segment
. number Page
Descriptor number Word
segment Page
table Offset
Page /
18-Bit Segment 6-Bit page 10-Bit offset
number number within the page

Y

Two-part MULTICS address

Figure 6-11. Conversion of a two-part MULTICS address into
amain memory address.

Bits 13 1 2
INDEX

0= GDT]|
1=LDT]|

Privilege level (0-3)

Figure 6-12. A Pentium Il selector.

. Relative
32 Bits address

BASE 0-15 LIMIT 0
BASE 24-31 (G(D(O| [LIMIT 16-19|P|DPL| TYPE BASE 16-23 4

T~Segment type and protection

0 : LIMIT is in bytes
1:LIMIT is in pages

0 : 16-bit segment 0 : Segment is absent from memory
1 : 32-bit segment 1 : Segment is present from memory

Figure 6-13. A Pentium Il code segment descriptor. Data seg-
ments differ dlightly.

Privilege level (0-3)

Selector Offset

Descriptor

Base address +

= < Limit

Other fields

Y

32-bit linear address

Figure 6-14. Conversion of a (selector, offset) pair to alinear address.

Linear address

Bits 10 10 12
DIR PAGE OFF
(@)
Page directory Page table Page frame

L L

1'%

DIR

i

A

7

Iy

~No

PAGE

(b)

i 1!

~No ~No

J<— Word selected

Figure 6-15. Mapping of alinear address onto a physical address.

Possible uses of
the levels

Level

Figure 6-16. Protection on the Pentium II.

Bits 51 13 48 16 45 19 42 22
Virtual 8K Virtual 64K Virtual 512K Virtual 4M Virtual
address [page number Offset page number Offset page number Ofiset page number Offset
Physical | 8K Page 64K Page 512K Page 4M Page
address frame |Offset frame | Offset frame |Ofset frame | Offset
Bits 28 13 25 16 22 19 19 22

Figure 6-17. Virtual to physical mappings on the UltraSPARC.

TLB (MMU hardware) TSB (MMU + sofware)

Context Context
Virtual Flags iy Flags
Page | physical . tag | Physical
Valid page VaJld i pjge
25 — A % Y

s T—T T
s T—1 T
s T—1 I

@

Entry O is shared
by all virtual pages

ending in 0...0000 Entry 1 is shared

by all virtual pages
ending in 0...0001

(b)

Translation table
(Operating system)

Format is
entirely
defined by
the operating
system

©

Figure 6-18. Data structures used in trandlating virtual ad-
dresses on the UltraSPARC. (a) TLB. (b) TSB. (c) Trandation

table.

Logical e

14

record
number

] 15

16

17

18

19

20

Next logical
record to be
read

21

22

Main memory

23

24

Logical
record 18 }Buffer

25

Figure 6-19. Reading a file consisting of logical records. (a)

€Y

1 logical
record

15

16

17

18

19

20

21

Next logical
record to be
read

22

23

Main memory

24

25

Logical
record 19

26

(b)

Before reading record 19. (b) After reading record 19.

}Buffer

Figure 6-20. Disk allocation strategies. (a) A file in consecu-

tive sectors. (b) A file not in consecutive sectors.

Number of

sectors
in hole

Track Sector

Sector

Track 0 1 2 3 4 5 6

7 8 9 10 11

OO O

O—+HOOO

[eoleololeNe)

OO -HdAO

OO dHO0O

OO -H—AHO

(b)

—1O OO0

OO0

OO0

OCO—HO

[oleoloNoR

OO—-HO

O NMm<

WO ddmwmmam

cooddmr~oOoO ™

OCO-ddNNNMM

(@)

Figure 6-21. Two ways of keeping track of available sectors.

(@ A freelist. (b) A bit map.

File O [File name: Rubber-ducky

File 1 Length: 1840

File 2 Type: Anatidae dataram
File 3 Creation date: March 16, 1066

File 4 Last access: September 1, 1492
File 5 |[«——< | Last change: July 4, 1776

File 6 Total accesses: 144

File 7 Block O: Track 4 Sector 6
File 8 Block 1: Track 19 Sector 9
File 9 Block 2: Track 11 Sector 2

File 10 Block 3: Track 77 Sector 0

Figure 6-22. (a) A user file directory. (b) The contents of a
typical entry in afile directory.

Process 3 waiting for CPU

Process 3 A

| Process3| 11 11 [l 11 [
| [N Y I R I R R R I R e e |
Process 2 R
(L . 1 1 1 1 1 1 1 1 1 1 1]
I Process2 | [[T 1T 11t 11t
| [N Y [N I (R e A R e O |
| Y I I (Y N O A A e R |
Process 1 SEREEEEEEREENE
I Process1 [[|| [] [l |1 |
A
~ A
Process 1 running
Time Time
@ (b)

Figure 6-23. (@) True parallel processing with multiple CPUs.
(b) Parallel processing simulated by switching one CPU among
three processes.

In,

In —]

In —]

Out —

Out —

In —

Out —

out—™

(@)

(b)

(€)

(d)

In >

Out —

Out —

Figure 6-24. Useof acircular buffer.

(e)

In —]

(f)

public class m {

final public static int BUF_SIZE = 100; // buffer runs from O to 99
final public static long MAX_PRIME =100000000000L; // stop here

public static int in = 0, out = 0; /l pointers to the data
public static long buffer[] = new long[BUF_SIZE];// primes stored here
public static producer p; /[name of the producer
public static consumer c; / name of the consumer
public static void main(String args|]) { / main class
p = new producer(); Il create the producer
c = new consumer(); Il create the consumer
p.start(); /[start the producer
c.start(); /l start the consumer
}

I/l This is a utility function for circularly incrementing in and out
public static int next(int k) {if (k < BUF_SIZE - 1) return(k+1); else return(0);}

}
class producer extends Thread { /I producer class
public void run() { /I producer code
long prime = 2; Il scratch variable
while (prime < m.MAX_PRIME) {
prime = next_prime(prime); /] statement P1
if (m.next(m.in) == m.out) suspend(); /I statement P2
m.buffer[m.in] = prime; Il statement P3
m.in = m.next(m.in); /] statement P4
if (m.next(m.out) == m.in) m.c.resume(); // statement P5
}
}

private long next_prime(long prime){ ... } // function that computes next prime

class consumer extends Thread { /I consumer class
public void run() { /l consumer code
long emirp = 2; Il scratch variable

while (emirp < m.MAX_PRIME) {
if (m.in == m.out) suspend(); // statement C1

emirp = m.buffer[m.out]; Il statement C2
m.out = m.next(m.out); Il statement C3
if (m.out == m.next(m.next(m.in))) m.p.resume();// statement C4
System.out.printin(emirp); Il statement C5

Figure 6-25. Parallel processing with afatal race condition.

Producer at P5

Producer at P1 Producer at P1 sends wake up
consumer at C5 consumer at C1 consumer at C1
100 100 100
Buffer In = 23—
empty
In =22 — In = Out = 22 — Out=22—>| Prime
Out = 21 — Prime
1 number
1 number in buffer
in buffer
1 1 1
(@ (b) (©)

Figure 6-26. Failure of the producer-consumer communication mechanism.

Instr

Semaphore =0

Semaphore >0

Up

Semaphore=semaphore+1,

if the other process was halted attempting to
complete adown instruction on this sema-
phore, it may now complete the down and
continue running

Semaphore=semaphore+1

Down

Process halts until the other process upsthis
semaphore

Semaphore=semaphore-1

Figure 6-27. The effect of a semaphore operation.

public class m {
final public static int BUF_SIZE = 100; // buffer runs from O to 99
final public static long MAX_PRIME =100000000000L; // stop here

public static int in = 0, out = 0; // pointers to the data
public static long buffer[] = new long[BUF_SIZE];// primes stored here
public static producer p; / name of the producer
public static consumer c; /I name of the consumer
public static int filled = 0, available = 100; /l semaphores
public static void main(String args|]) { // main class
p = new producer(); Il create the producer
C = new consumer(); Il create the consumer
p.start(); /I start the producer
c.start(); /[start the consumer
}

/[This is a utility function for circularly incrementing in and out
public static int next(int k) {if (k < BUF_SIZE - 1) return(k+1); else return(0);}
}

class producer extends Thread { I/l producer class
native void up(int s); native void down(int s); // methods on semaphores
public void run() { /I producer code
long prime = 2; /I scratch variable
while (prime < m.MAX_PRIME) {
prime = next_prime(prime); /] statement P1
down(m.available); /] statement P2
m.buffer[m.in] = prime; Il statement P3
m.in = m.next(m.in); /] statement P4
up(m.filled); /] statement P5
}
}

private long next_prime(long prime){ ... } // function that computes next prime

}

class consumer extends Thread { /I consumer class
native void up(int s); native void down(int s); // methods on semaphores
public void run() { /I consumer code
long emirp = 2; Il scratch variable
while (emirp < m.MAX_PRIME) {
down(m.filled); I/ statement C1
emirp = m.buffer[m.out]; /] statement C2
m.out = m.next(m.out); Il statement C3
up(m.available); /] statement C4
System.out.printin(emirp); Il statement C5
}
}

} Figure 6-28. Parallel processing using semaphores.

Category Some examples
File management Open, read, write, close, and lock files
Directory management Create and delete directories; move files around
Process management Spawn, terminate, trace, and signal processes
Memory management Share memory among processes; protect pages
Getting/setting parameters Get user, group, process ID; set priority
Dates and times Set file access times; use interval timer; profile execution
Networking Establish/accept connection; send/receive message
Miscellaneous Enable accounting; manipulate disk quotas; reboot the system

Figure 6-29. A rough breakdown of the UNIX system calls.

Shell

User program

System call interface
File system Process management
Block cache IPC Scheduling
Device drivers Signals Memory mgmt.
Hardware

Figure 6-30. The structure of atypical UNIX system.

L User

mode

Kernel
mode

Executive <

POSIX program

Win32 program OS/2 program

1

1

!

POSIX subsystem

Win32 subsystem |- 0OS/2 subsystem

1

!

1

System interface

System services

:) Processes
File Virtual . i
110 and Security Win32
cache | memory threads
and
File .
systems Object management Graphics
) . - . device
Device drivers Microkernel interface
Hardware abstraction layer

Hardware

User
" mode

\ Kernel
mode

Figure 6-31. The structure of Windows NT.

Item Windows 95/98 | NT 5.0
Win32 API? Yes Yes
Full 32-bit system? No Yes
Security? No Yes
Protected file mappings? No Yes
Sep. addr space for each MS-DOS program? No Yes
Plug and play? Yes Yes
Unicode? No Yes
Runs on Intel 80x86 80x86, Alpha
Multiprocessor support? No Yes
Re-entrant code inside OS? No Yes
Some critical OS data writable by user? Yes No

Figure 6-32. Some differences between versions of Windows.

Address
OXFFFFFFFF Stack

?

Data
Code

0

Figure 6-33. The address space of asingle UNIX process.

API function Meaning
VirtualAlloc Reserve or commit a region
VirtualFree Release or decommit a region
VirtualProtect Change the read/write/execute protection on a region
VirtualQuery Inquire about the status of a region
VirtualLock Make a region memory resident (i.e., disable paging for it)
VirtualUnlock Make a region pageable in the usual way
CreateFileMapping Create a file mapping object and (optionally) assign it a name
MapViewOfFile Map (part of) a file into the address space
UnmapViewOfFile Remove a mapped file from the address space
OpenFileMapping Open a previously created file mapping object

Figure 6-34. The principal API functions for managing virtual
memory in Windows NT.

System call

Meaning

creat(name, mode)

Create a file; mode specifies the protection mode

unlink(name)

Delete a file (assuming that there is only 1 link to it)

open(name, mode)

Open or create a file and return a file descriptor

close(fd)

Close a file

read(fd, buffer, count)

Read count bytes into buffer

write(fd, buffer, count)

Write count bytes from buffer

Iseek(fd, offset, w)

Move the file pointer as required by offset and w

stat(name, buffer)

Return information about a file

chmod(name, mode)

Change the protection mode of a file

fentl(fd, cmd, ...)

Do various control operations such as locking (part of) a file

Figure 6-35. The principal UNIX file system calls.

I/l Open the file descriptors
infd = open("data”, 0);
outfd = creat(""newf", ProtectionBits);

I/l Copy loop
do {

count = read(infd, buffer, bytes);

if (count > 0) write(outfd, buffer, count);
} while (count > 0);

/Il Close the files
close(infd);
close(outfd);

Figure 6-36. A program fragment for copying a file using the
UNIX system calls. This fragment is in C because Java hides
the low-level system calls and we are trying to expose them.

Root directory
bin

L dev 4
lib

- usr

y b y lusr /dev y y /bin
- ast

jim

y/usr/ast /usr/jimy

- bin jotto

data

foo.c

y /usr/ast/bin

game 1/

game 2

game 34

game 4

%(—/
Data files

Figure 6-37. Part of atypical UNIX directory system.

System call

Meaning

mkdir(name, mode)

Create a new directory

rmdir(name)

Delete an empty directory

opendir(name)

Open a directory for reading

readdir(dirpointer)

Read the next entry in a directory

closedir(dirpointer)

Close a directory

chdir(dirname)

Change working directory to dirname

link(namel, name?2)

Create a directory entry nameZ2 pointing to namel

unlink(name)

Remove name from its directory

Figure 6-38. The principal UNIX directory management calls.

API function UNIX Meaning
CreateFile open Create a file or open an existing file; return a handle
DeleteFile unlink | Destroy an existing file
CloseHandle close | Close afile
ReadFile read Read data from a file
WriteFile write Write data to a file
SetFilePointer Iseek | Set the file pointer to a specific place in the file
GetFileAttributes stat Return the file properties
LockFile fentl Lock a region of the file to provide mutual exclusion
UnlockFile fentl Unlock a previously locked region of the file

Figure 6-39. The principal Win32 API functions for file 1/O.
The second column gives the nearest UNIX equivalent.

/I Open files for input and output.

inhandle = CreateFile("data’’, GENERIC_READ, 0, NULL, OPEN_EXISTING, 0, NULL);

outhandle = CreateFile("'newf"’, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL, NULL);

/I Copy the file.
do {

s = ReadFile(inhandle, buffer, BUF_SIZE, &count, NULL);

if (s > 0 && count > 0) WriteFile(outhandle, buffer, count, &ocnt, NULL);
while (s > 0 && count > 0);

/I Close the files.
CloseHandle(inhandle);
CloseHandle(outhandle);

Figure 6-40. A program fragment for copying a file using the
Windows NT API functions. This fragment is in C because
Java hides the low-level system calls and we are trying to ex-
pose them.

API function UNIX Meaning
CreateDirectory mkdir Create a new directory
RemoveDirectory rmdir Remove an empty directory
FindFirstFile opendir | Initialize to start reading the entries in a directory
FindNextFile readdir | Read the next directory entry
MoveFile Move a file from one directory to another
SetCurrentDirectory chdir Change the current working directory

Figure 6-41. The principal Win32 API functions for directory
management. The second column gives the nearest UNIX
equivalent, when one exists.

MFT
header

Master
file
table

Standard MS-DOS
information File name name Security

Data

.
\

Y
MFT entry for one file

Figure 6-42. The Windows NT master file table.

—— Original process

(A) =—— Children of A

Q ——— Grandchildren of A

Figure 6-43. A process treein UNIX.

Thread call

Meaning

pthread_create

Create a new thread in the caller's address space

pthread_exit

Terminate the calling thread

pthread_join

Wait for a thread to terminate

pthread_mutex_init

Create a new mutex

pthread_mutex_destroy

Destroy a mutex

pthread_mutex_lock

Lock a mutex

pthread_mutex_unlock

Unlock a mutex

pthread_cond_init

Create a condition variable

pthread_cond_destroy

Destroy a condition variable

pthread_cond_wait

Wait on a condition variable

pthread_cond_signal

Release one thread waiting on a condition variable

Figure 6-44. The principal POSIX thread calls.

