6

THE OPERATING SYSTEM
MACHINE LEVEL



Level 3 Operating system machine level

Operating system

Level 2 Instruction set architecture level

Microprogram or hardware

Level 1 Microarchitecture level

Figure 6-1. Positioning of the operating system machine level.
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Figure6-2. A mapping in which virtual addresses 4096 to
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Page  Virtual addresses

15 61440 — 65535

14 57344 — 61439

13 53248 — 57343

12 49152 — 53247

11 45056 — 49151

10 40960 — 45055 Bottom 32K of
9 36864 — 40959 Page main memory
8 32768 — 36863 frame Physical addresses
7 28672 — 32767 7 28672 — 32767
6 24576 — 28671 6 24576 — 28671
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3 12288 — 16383 3 12288 — 16383
2 8192 — 12287 2 8192 — 12287
1 4096 — 8191 1 4096 — 8191
0 0 — 4095 0 0 — 4095
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(b)

Figure 6-3. (a) The first 64K of virtual address space divided
into 16 pages, with each page being 4K. (b) A 32K main
memory divided up into eight page frames of 4K each.
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Figure 6-6. Failure of the LRU agorithm.
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Figure 6-7. In a one-dimensional address space with growing
tables, one table may bump into another.
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Consideration Paging Segmentation
Need the programmer be aware of it? No Yes
How many linear addresses spaces are there? |1 Many
Can virtual address space exceed memory size? Yes Yes
Can variable-sized tables be handled easily? No Yes
Why was the technique invented? To simulate large | To provide multiple
memories address spaces

Figure 6-9. Comparison of paging and segmentation.
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Figure 6-10. (a)-(d) Development of external fragmentation

(e) Removal of the external fragmentation by compaction.
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Figure 6-11. Conversion of a two-part MULTICS address into
amain memory address.
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Figure 6-12. A Pentium Il selector.
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Figure 6-14. Conversion of a (selector, offset) pair to alinear address.
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Figure 6-15. Mapping of alinear address onto a physical address.
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Figure 6-16. Protection on the Pentium II.



Bits 51 13 48 16 45 19 42 22
Virtual 8K Virtual 64K Virtual 512K Virtual 4M Virtual
address [page number Offset page number Offset page number Ofiset page number Offset
Physical | 8K Page 64K Page 512K Page 4M Page
address frame |Offset frame | Offset frame |Ofset frame | Offset
Bits 28 13 25 16 22 19 19 22

Figure 6-17. Virtual to physical mappings on the UltraSPARC.
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Figure 6-18. Data structures used in trandlating virtual ad-
dresses on the UltraSPARC. (a) TLB. (b) TSB. (c) Trandation

table.
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Figure 6-20. Disk allocation strategies. (a) A file in consecu-

tive sectors. (b) A file not in consecutive sectors.
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Figure 6-21. Two ways of keeping track of available sectors.

(@ A freelist. (b) A bit map.



File O [ File name: Rubber-ducky

File 1 Length: 1840

File 2 Type: Anatidae dataram
File 3 Creation date:  March 16, 1066

File 4 Last access: September 1, 1492
File 5 |[«——< | Last change: July 4, 1776

File 6 Total accesses: 144

File 7 Block O: Track 4 Sector 6
File 8 Block 1: Track 19 Sector 9
File 9 Block 2: Track 11 Sector 2

File 10 Block 3: Track 77 Sector 0

Figure 6-22. (a) A user file directory. (b) The contents of a
typical entry in afile directory.
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Figure 6-23. (@) True parallel processing with multiple CPUs.
(b) Parallel processing simulated by switching one CPU among
three processes.
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public class m {

final public static int BUF_SIZE = 100; // buffer runs from O to 99
final public static long MAX_PRIME =100000000000L; // stop here

public static int in = 0, out = 0; /l pointers to the data
public static long buffer[ ] = new long[BUF_SIZE];// primes stored here
public static producer p; /[ name of the producer
public static consumer c; / name of the consumer
public static void main(String args| ]) { / main class
p = new producer(); Il create the producer
c = new consumer( ); Il create the consumer
p.start( ); /[ start the producer
c.start( ); /l start the consumer
}

I/l This is a utility function for circularly incrementing in and out
public static int next(int k) {if (k < BUF_SIZE - 1) return(k+1); else return(0);}

}
class producer extends Thread { /I producer class
public void run() { /I producer code
long prime = 2; Il scratch variable
while (prime < m.MAX_PRIME) {
prime = next_prime(prime); /] statement P1
if (m.next(m.in) == m.out) suspend(); /I statement P2
m.buffer[m.in] = prime; Il statement P3
m.in = m.next(m.in); /] statement P4
if (m.next(m.out) == m.in) m.c.resume( ); // statement P5
}
}

private long next_prime(long prime){ ... } // function that computes next prime

class consumer extends Thread { /I consumer class
public void run() { /l consumer code
long emirp = 2; Il scratch variable

while (emirp < m.MAX_PRIME) {
if (m.in == m.out) suspend(); // statement C1

emirp = m.buffer[m.out]; Il statement C2
m.out = m.next(m.out); Il statement C3
if (m.out == m.next(m.next(m.in))) m.p.resume( );// statement C4
System.out.printin(emirp); Il statement C5

Figure 6-25. Parallel processing with afatal race condition.



Producer at P5

Producer at P1 Producer at P1 sends wake up
consumer at C5 consumer at C1 consumer at C1
100 100 100
Buffer In = 23—
empty
In =22 — In = Out = 22 — Out=22—>| Prime
Out = 21 — Prime
1 number
1 number in buffer
in buffer
1 1 1
(@ (b) (©)

Figure 6-26. Failure of the producer-consumer communication mechanism.
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Figure 6-27. The effect of a semaphore operation.




public class m {
final public static int BUF_SIZE = 100; // buffer runs from O to 99
final public static long MAX_PRIME =100000000000L; // stop here

public static int in = 0, out = 0; // pointers to the data
public static long buffer[ ] = new long[BUF_SIZE];// primes stored here
public static producer p; / name of the producer
public static consumer c; /I name of the consumer
public static int filled = 0, available = 100; /l semaphores
public static void main(String args| ]) { // main class
p = new producer(); Il create the producer
C = new consumer( ); Il create the consumer
p.start( ); /I start the producer
c.start( ); /[ start the consumer
}

/[ This is a utility function for circularly incrementing in and out
public static int next(int k) {if (k < BUF_SIZE - 1) return(k+1); else return(0);}
}

class producer extends Thread { I/l producer class
native void up(int s); native void down(int s);  // methods on semaphores
public void run() { /I producer code
long prime = 2; /I scratch variable
while (prime < m.MAX_PRIME) {
prime = next_prime(prime); /] statement P1
down(m.available); /] statement P2
m.buffer[m.in] = prime; Il statement P3
m.in = m.next(m.in); /] statement P4
up(m.filled); /] statement P5
}
}

private long next_prime(long prime){ ... } // function that computes next prime

}

class consumer extends Thread { /I consumer class
native void up(int s); native void down(int s);  // methods on semaphores
public void run( ) { /I consumer code
long emirp = 2; Il scratch variable
while (emirp < m.MAX_PRIME) {
down(m.filled); I/ statement C1
emirp = m.buffer[m.out]; /] statement C2
m.out = m.next(m.out); Il statement C3
up(m.available); /] statement C4
System.out.printin(emirp); Il statement C5
}
}

} Figure 6-28. Parallel processing using semaphores.



Category Some examples
File management Open, read, write, close, and lock files
Directory management Create and delete directories; move files around
Process management Spawn, terminate, trace, and signal processes
Memory management Share memory among processes; protect pages
Getting/setting parameters Get user, group, process ID; set priority
Dates and times Set file access times; use interval timer; profile execution
Networking Establish/accept connection; send/receive message
Miscellaneous Enable accounting; manipulate disk quotas; reboot the system

Figure 6-29. A rough breakdown of the UNIX system calls.
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Figure 6-30. The structure of atypical UNIX system.

L User

mode

Kernel
mode



Executive <

POSIX program

Win32 program OS/2 program

1

1

!

POSIX subsystem

Win32 subsystem |- 0OS/2 subsystem

1

!

1

System interface

System services

: ) Processes
File Virtual . i
110 and Security Win32
cache | memory threads
and
File .
systems Object management Graphics
) . - . device
Device drivers Microkernel interface
Hardware abstraction layer

Hardware

User
" mode

\ Kernel
mode

Figure 6-31. The structure of Windows NT.



Item Windows 95/98 | NT 5.0
Win32 API? Yes Yes
Full 32-bit system? No Yes
Security? No Yes
Protected file mappings? No Yes
Sep. addr space for each MS-DOS program? No Yes
Plug and play? Yes Yes
Unicode? No Yes
Runs on Intel 80x86 80x86, Alpha
Multiprocessor support? No Yes
Re-entrant code inside OS? No Yes
Some critical OS data writable by user? Yes No

Figure 6-32. Some differences between versions of Windows.
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Figure 6-33. The address space of asingle UNIX process.



API function Meaning
VirtualAlloc Reserve or commit a region
VirtualFree Release or decommit a region
VirtualProtect Change the read/write/execute protection on a region
VirtualQuery Inquire about the status of a region
VirtualLock Make a region memory resident (i.e., disable paging for it)
VirtualUnlock Make a region pageable in the usual way
CreateFileMapping Create a file mapping object and (optionally) assign it a name
MapViewOfFile Map (part of) a file into the address space
UnmapViewOfFile Remove a mapped file from the address space
OpenFileMapping Open a previously created file mapping object

Figure 6-34. The principal API functions for managing virtual
memory in Windows NT.




System call

Meaning

creat(name, mode)

Create a file; mode specifies the protection mode

unlink(name)

Delete a file (assuming that there is only 1 link to it)

open(name, mode)

Open or create a file and return a file descriptor

close(fd)

Close a file

read(fd, buffer, count)

Read count bytes into buffer

write(fd, buffer, count)

Write count bytes from buffer

Iseek(fd, offset, w)

Move the file pointer as required by offset and w

stat(name, buffer)

Return information about a file

chmod(name, mode)

Change the protection mode of a file

fentl(fd, cmd, ...)

Do various control operations such as locking (part of) a file

Figure 6-35. The principal UNIX file system calls.




I/l Open the file descriptors
infd = open("data”, 0);
outfd = creat(""newf", ProtectionBits);

I/l Copy loop
do {

count = read(infd, buffer, bytes);

if (count > 0) write(outfd, buffer, count);
} while (count > 0);

/Il Close the files
close(infd);
close(outfd);

Figure 6-36. A program fragment for copying a file using the
UNIX system calls. This fragment is in C because Java hides
the low-level system calls and we are trying to expose them.
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Figure 6-37. Part of atypical UNIX directory system.



System call

Meaning

mkdir(name, mode)

Create a new directory

rmdir(name)

Delete an empty directory

opendir(name)

Open a directory for reading

readdir(dirpointer)

Read the next entry in a directory

closedir(dirpointer)

Close a directory

chdir(dirname)

Change working directory to dirname

link(namel, name?2)

Create a directory entry nameZ2 pointing to namel

unlink(name)

Remove name from its directory

Figure 6-38. The principal UNIX directory management calls.




API function UNIX Meaning
CreateFile open Create a file or open an existing file; return a handle
DeleteFile unlink | Destroy an existing file
CloseHandle close | Close afile
ReadFile read Read data from a file
WriteFile write Write data to a file
SetFilePointer Iseek | Set the file pointer to a specific place in the file
GetFileAttributes stat Return the file properties
LockFile fentl Lock a region of the file to provide mutual exclusion
UnlockFile fentl Unlock a previously locked region of the file

Figure 6-39. The principal Win32 API functions for file 1/O.
The second column gives the nearest UNIX equivalent.




/I Open files for input and output.

inhandle = CreateFile("data’’, GENERIC_READ, 0, NULL, OPEN_EXISTING, 0, NULL);

outhandle = CreateFile("'newf"’, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL, NULL);

/I Copy the file.
do {

s = ReadFile(inhandle, buffer, BUF_SIZE, &count, NULL);

if (s > 0 && count > 0) WriteFile(outhandle, buffer, count, &ocnt, NULL);
while (s > 0 && count > 0);

/I Close the files.
CloseHandle(inhandle);
CloseHandle(outhandle);

Figure 6-40. A program fragment for copying a file using the
Windows NT API functions. This fragment is in C because
Java hides the low-level system calls and we are trying to ex-
pose them.



API function UNIX Meaning
CreateDirectory mkdir Create a new directory
RemoveDirectory rmdir Remove an empty directory
FindFirstFile opendir | Initialize to start reading the entries in a directory
FindNextFile readdir | Read the next directory entry
MoveFile Move a file from one directory to another
SetCurrentDirectory chdir Change the current working directory

Figure 6-41. The principal Win32 API functions for directory
management. The second column gives the nearest UNIX
equivalent, when one exists.
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Figure 6-42. The Windows NT master file table.
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Figure 6-43. A process treein UNIX.



Thread call

Meaning

pthread_create

Create a new thread in the caller's address space

pthread_exit

Terminate the calling thread

pthread_join

Wait for a thread to terminate

pthread_mutex_init

Create a new mutex

pthread_mutex_destroy

Destroy a mutex

pthread_mutex_lock

Lock a mutex

pthread_mutex_unlock

Unlock a mutex

pthread_cond_init

Create a condition variable

pthread_cond_destroy

Destroy a condition variable

pthread_cond_wait

Wait on a condition variable

pthread_cond_signal

Release one thread waiting on a condition variable

Figure 6-44. The principal POSIX thread calls.




