Assignment Three

Using GRAM to Submit a Job to the Grid

Version 0.42 (Sept. 26, 2004)

Written by Mark Holliday

(with additions by Barry Wilkinson)

CS 493: Grid Computing (Fall 2004)

Instructor: Dr. Barry Wilkinson

Overview

The objective of this third assignment is for you to understand how to submit a job to a grid using the Globus Resource Allocation Manager (GRAM). In particular, we will learn to use the version of GRAM that comes with Globus Toolkit 3.2. This assignment will take you through the steps necessary to submit a precompiled job. Then, you will be required to submit a new job compiled from its source code. Finally, you will be asked to create one and then four identical clients representing shoppers that access a grid service managing the inventory of items in a store.

Specifics

We will:

· In the first shell, logon to terra and cd to the directory specified by the GLOBUS_LOCATION environment variable.

· Use the netstat –t –all command to see what TCP ports are in use

· Start a container using a TCP port that is free

· In a second shell, logon to terra and cd to the directory specified by the GLOBUS_LOCATION environment variable.

· Start a proxy process

· Use the managed-job-globusrun command to submit a job

· Write, compile, and submit your own job.

· Write and deploy your own grid service accessed with multiple identical clients using the managed-job-globusrun command.

Step 1: Getting Started.

As described in assignment 1, logon to your account on terra.cs.wcu.edu (via your account on sol.cs.wcu.edu). When you log in, you current directory initially is /home/youryourusername where youryourusername is replaced by your yourusername. You should assume that substitution everywhere in the rest of this handout. In this first step, you need to change your current directory to the directory specified by the GLOBUS_LOCATION environment variable.

Assuming that you are in your home directory, enter the command:

[yourusername@terra yourusername]$ cd $GLOBUS_LOCATION

[yourusername@terra globus]$
On terra, the GLOBUS_LOCATION environment variable has the value /usr/local/globus so you could have used the command cd /usr/local/globus instead though it is not as general. All of the pathnames used for the rest of this assignment are relative pathnames that assume you are in the directory specified by the GLOBUS_LOCATION environment variable.

The Linux command interpreter (shell) executes what is entered on one line at the command prompt. That one line usually (and always in this assignment) has just one command. The problem is that sometimes that one command is longer than the width of the console screen or of the width of a document page. There are two solutions that the command interpreter supports. One solution is that since a line is defined as all the characters until a newline character, the shell can handle a command that is so long that it wraps around on the console to the next line as long as the user does not enter a newline character. The second solution is that the shell views a backslash character, “\”, as escaping the next character. Thus, a backspace character immediately before a newline character is not considered to be the start of a new line by the shell.

In this handout whenever a command is long it will be shown on multiple lines but with a backslash character at the end of each line except the last line. It is important when entering a command in this manner that the newline character (generated by pressing the ENTER key) be immediately after the backslash character.

Step 2: Finding Which TCP Ports are in use

In Step 3, you will want to start a container process running. A container process listens on a TCP port when it is running. If you do not specify what port it will listen on then it will choose port 8080 by default. Often another process is using port 8080. Since only one process can be listening on a port at a time, you need to determine which ports are free before you start the container. The netstat (NETwork STATistics) command can be used to find this information.

[yourusername@terra globus]$ netstat –t –all

The –t flag and the –all flag causes the netstat command to show all the TCP ports that are currently in use.

Step 3: Start a Container

Start a container using the globus-start-container command while specifying a TCP port that is not already in use as determined in step 2.

[yourusername@terra globus]$ globus-start-container –p portnumber

In this example replace portnumber by the actual port number. Starting a container often takes a minute or so. In addition, sometimes starting the container temporarily fails. In particular, it is not unusual for an error message from the UHERestartHandler to appear stating “ping failed for a uhe so restarting it”. This error message may appear several times before the container finally successfully starts. After entering the globus-start-container command, there will be a delay (say of a minute or so) and then quite a bit of output to the screen will appear. Near the start of this output will be the line

With the following services:

and then a list of services with each services specified by its URL and on a separate line.

The globus-start-container executable is in the $GLOBUS_LOCATION/bin directory along with the executables for the other globus commands.

Step 4: Start Second Shell

The globus-start-container command starts a container process that does not terminate. Therefore the command prompt does not return for the current shell. Consequently, the remaining steps must be done in a new shell. For the second shell repeat step one above. In other words, in a new window logon to terra (via sol) and then make the directory specified by the GLOBUS_LOCATION environment variable your current directory using the cd command.

[yourusername@terra yourusername]$ cd $GLOBUS_LOCATION

[yourusername@terra globus]$

It is possible to avoid the need to start a second shell. The globus-start-container command could be run in the background by placing an ampersand, &, at the end of the command. However, this will cause the output to still appear on the screen. The output (both standard output and standard error) could be redirected to a file to avoid this problem, with a command such as

[yourusername@terra globus]$ globus-start-container | tee logfile &
(using the default port number in this example).

Step 5: Start a Proxy

Start a proxy process using the following command.

[yourusername@terra globus]$ grid-proxy-init

You will then be prompted for your pass phrase which is

globus

It is important to not start the proxy until the container has fully loaded.

Step 6: Submit a Job

You are now ready to actually submit and run your job. In this step, we will use a pre-existing program that comes with the linux distribution, called echo. This program sends (echoes) its command line arguments to its standard output. We will redirect standard output to a file, stdout.

The command to use is:

[yourusername@terra globus]$ managed-job-globusrun –factory \

http://152.30.5.102:portnumber/ogsa/services/base/gram/MasterForkManagedJobFactoryService \

-file schema/base/gram/examples/test.xml

This command requires some comments.

· It is shown on three lines since it is so long. The backslash characters are because the command is on more than one line. Each backslash character must immediately precede a newline character.

· In the second line the string portnumber must be replaced by the port number which your container is listening on (that you selected in step three)

· This command has two flags –factory and –file. The –factory flag takes one argument which is the URL of the MasterForkManagedJobFactoryService process.

· The –file flag takes one argument which is the path of the file which specifies the job to run. In this example that file is schema/base/gram/examples/test.xml which is a relative pathname assuming that the current directory is the GLOBUS_LOCATION directory.

Below is a listing of the result of running this command

[mholliday@terra globus]$ managed-job-globusrun -factory \

http://152.30.5.102:8090/ogsa/services/base/gram/MasterForkManagedJobFactoryService \
-file schema/base/gram/examples/test.xml

WAITING FOR JOB TO FINISH

========== Status Notification ==========

Job Status: Active

===

========== Status Notification ==========

Job Status: Done

===

DESTROYING SERVICE

SERVICE DESTROYED

[mholliday@terra globus]$

The lines starting with

WAITING FOR JOB TO FINISH

are being output by the managed-job-globusrun command. My experience is that there is a significant delay (at least a minute) from when the command is entered until when the first line of output appears. Do not kill the command because you think it is hung until you have waited much longer than one minute.

You should then look in your home directory using the ls command and you will see two new files named stderr and stdout. If you use the ls –l command you will see that both files have just been created.

[yourusername@terra yourusername]$ ls -l

total 20

drwxrwxr-x 8 yourusername globus 4096 Aug 4 16:22 GridServices

-rw-r--r-- 1 yourusername globus 0 Aug 5 15:28 stderr

-rw-r--r-- 1 yourusername globus 66 Aug 5 15:28 stdout

drwxrwxr-x 4 yourusername globus 4096 Aug 4 13:37 WebServices

If you then use the less command to see the content of the stdout file you will see the following result.

[yourusername@terra yourusername]$ less stdout

12 abc 34 pdscaex_instr_GrADS_grads23_28919.cfg pgwynnel was here

The content of the stdout file is what the job you just ran sent to its standard output. As shown below, the job you just ran is the echo program at the location /bin/echo. This program sends (echoes) its command line arguments to its standard output. The values in the stdout file are the command line arguments that you passed to the echo program using the file schema/base/gram/examples/test.xml.
The above should suggest that the file schema/base/gram/examples/test.xml is important. It is. In particular, it is not the executable for the job that is being submitted. Instead it is an XML file specifying the resources to be used in running the job with the path of the job executable being one of those resources. The test.xml file written using an XML schema called RSL (Resource Specification Language) and is shown below.

<?xml version="1.0" encoding="UTF-8"?>

<rsl:rsl xmlns:rsl="http://www.globus.org/namespaces/2004/02/rsl"

 xmlns:enum="http://www.globus.org/namespaces/2004/02/rsl/enum"

 xmlns:gram="http://www.globus.org/namespaces/2004/02/rsl/gram"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://www.globus.org/namespaces/2004/02/rsl

 /usr/local/globus/schema/base/gram/rsl.xsd

 http://www.globus.org/namespaces/2004/02/rsl/gram

 /usr/local/globus/schema/base/gram/gram_rsl.xsd">

<gram:job>

 <gram:executable> <rsl:path>

 <rsl:stringElement value="/bin/echo"/> </rsl:path>

 </gram:executable>

 <gram:directory> <rsl:path>

 <rsl:stringElement value="/tmp"/> </rsl:path>

 </gram:directory>

 <gram:arguments>

 <rsl:stringArray>

 <rsl:string> <rsl:stringElement value="12"/> </rsl:string>

 <rsl:string> <rsl:stringElement value="abc"/> </rsl:string>

 <rsl:string> <rsl:stringElement value="34"/> </rsl:string>

 <rsl:string> <rsl:stringElement

 value="pdscaex_instr_GrADS_grads23_28919.cfg"/>

 </rsl:string>

 <rsl:string> <rsl:stringElement

 value="pgwynnel was here"/>

 </rsl:string>

 </rsl:stringArray>

 </gram:arguments>

 <gram:environment>

 <rsl:hashtable>

 <rsl:entry name="PI">

 <rsl:stringElement value="3.141"/>

 </rsl:entry>

 <rsl:entry name="GLOBUS_DUROC_SUBJOB_INDEX">

 <rsl:stringElement value="0"/>

 </rsl:entry>

 </rsl:hashtable>

 </gram:environment>

 <gram:stdin> <rsl:path>

 <rsl:stringElement value="/dev/null"/> </rsl:path> </gram:stdin>

 <gram:stdout>

 <rsl:pathArray>

 <rsl:path>

 <rsl:substitutionRef name="HOME"/>

 <rsl:stringElement value="/stdout"/>

 </rsl:path>

 </rsl:pathArray>

 </gram:stdout>

 <gram:stderr>

 <rsl:pathArray>

 <rsl:path>

 <rsl:substitutionRef name="HOME"/>

 <rsl:stringElement value="/stderr"/>

 </rsl:path>

 </rsl:pathArray>

 </gram:stderr>

 <gram:count> <rsl:integer value="1"/> </gram:count>

 <gram:jobType>

 <enum:enumeration>

 <enum:enumerationValue> <enum:multiple/> </enum:enumerationValue>

 </enum:enumeration>

 </gram:jobType>

 <gram:gramMyJobType>

 <enum:enumeration>

 <enum:enumerationValue> <enum:collective/> </enum:enumerationValue>

 </enum:enumeration>

 </gram:gramMyJobType>

 <gram:dryRun> <rsl:boolean value="false"/> </gram:dryRun>

</gram:job>

</rsl:rsl>

Appendix A includes a link to learn more about the Resource Specification Language (RSL) which in Globus Toolkit 3.2 is an XML namespace. For now just note the three parts of the test.xml file that has been highlighted in boldface.

· The first highlighted part starts with the tag gram:executable. This section has the string /bin/echo which is the path of the job executable that is to be run. That job, the echo program, is supposed to echo its command line argument to its standard output.

· The second highlighted part starts with the tag gram:arguments. This section has an entry for each command line argument that is an argument to the executable (which in this example is the program /bin/echo). In this example, there are five arguments each of which will be echoed by the /bin/echo program to standard output. This raises the question of what file standard output is attached to since being the default attachment of standard output to the file that represents the console is not very general purpose.

· The third highlighted part starts with the tag gram:stdout. This section specifies the file to which standard output (that is, stdout) must be attached. The file is specified using two key tags rsl:substitutionRef and rsl:stringElement. The way to think of these tags is that the rsl:stringElement tag is the path of the file that standard output is to be written but that path is relative to the path specified by the tag rsl:substitutionRef.

The rsl:substitionRef tag has the value HOME which is the environment variable which contains the path of the current user’s home directory. The rsl:stringElement tag has the value /stdout. Thus, standard output will be written to the file $HOME/stdout; in other words, to the file /home/yourusername/stdout. So after you run this job a file named stdout should be created in your home directory with the output of the job. If this file already exists, then the output of the job run is appended to the existing file instead of overwriting the current contents of the file.

Just below this part standard error is also redirected to the file $HOME/stderr. The echo program does not take any input from standard input (it does take input in the sense of command line arguments), but the tag gram:stdin is used to specify the file to be used for standard input.

Note that you submitted the job /bin/echo, which is the echo program that is part of the linux distribution. This is a very simple program which in itself takes very few system resources. You can submit it yourself to terra simply by at the terra command prompt entering the name of that executable and some arguments.

[yourusername@terra yourusername]$ /bin/echo some arguments

some arguments

The echo program will send to its standard output (which is the console by default) the command line arguments it received. Notice how quickly the echo program ran from the console and how simple it was to submit. Clearly the entire globus and grid services infrastructure add a significant amount of overhead and is justifiable only when the job being run is much more involved than the echo program.

Step 7: Write, Compile, and Submit Your Own Job

In step 6, you submitted the job /bin/echo which is the echo program that is part of the linux distribution. In step 7, you are to write your own echo program and then compile, and submit that program as a job. Your program must take one command line argument and output that argument to its standard output, re-directed to a file in your directory. This is not as difficult as it might sound. You can use C, C++, or Java for writing your program.

Regardless of which of these languages you use there are several common steps that are needed.

· In the previous job submission, you
· Used an executable, /bin/echo, that was provided in the system directory /bin,
· Used an xml file for resource specification that was provided as part of the globus gram distribution; recall that the xml file’s location was specified as by the argument immediately after the –file flag in the managed-job-globusrun command and was
GLOBUS_LOCATION/schema/base/gram/examples/test.xml

· Redirected standard input, standard output, and standard error to come from or go to files that were in directories owned by root

· All three of these file path assignments need to be changed since you want to use an executable that you created, to use an xml file that you created, and to have the standard input, standard output, and standard error go to files that are owned by you. The changes implied by these facts are:

· Create a directory /home/yourusername/GRAM and in that directory create two files: one file will contain the source code for your program, the second file will contain the xml for your resource specification (RSL). The source code file should have the name Echo followed by the extension appropriate to the language that you are using. For example, if you are using Java, the extension is java and the complete filename is Echo.java. The xml file should be called Echo.xml.

· Your xml file, Echo.xml, needs to reflect the path to the file which is the executable you are using and name and the path to the files which you are using for standard input, standard output, and standard error. The tags for these four files were identified above in the test.xml file. For standard input, standard output, and standard error change these file pathnames to refer to the directory /home/yourusername/GRAM. Remember from the test.xml example that the file pathname is constructed from the combination of the rsl:substitutionRef tag and the rsl:stringElement tag. Thus, your output will appear in that directory in the file stdout.

· The file pathname to use in your Echo.xml file to specify the executable that you are using depends on the programming language that you are using. If you are using C or C++ the file pathname should be /home/yourusername/GRAM/Echo. Why? When you compile your C or C++ program in the /home/yourusername/GRAM directory you create your executable in a file named a.out (the default name used for the executable). You should change that name to Echo using the mv command.
mv a.out echo

· If you are using Java, the file pathname for the executable should be the file pathname to the Java interpreter. Currently, this pathname is /usr/java/j2sdk1.4.2_04/bin/java. Why? When you run a java program the actual executable from the viewpoint of the shell is the java interpreter (that is, the java virtual machine). The java class file is simply the first command line argument to the java interpreter. Thus, you need to use the java compiler, javac, to generate the java class file Echo.class from your source file Echo.java.
· If you are using a C or C++ program, the xml file needs to specify that the executable takes one argument which is the string to be echoed. If you are using a Java program, the xml file needs to specify that the executable takes two arguments. The first argument is the name of your java class file, Echo.class, and the second argument is the string to be echoed.
· If your container is not running, you need to start it as described earlier. Once your container is running, you need to start your proxy (as described earlier) if it is not already running.

· Finally, while in the GLOBUS_LOCATION directory, run the managed-job-globusrun command with the path of the Echo.xml file changed to refer to /home/yourusername/GRAM/Echo.xml.

· Then open the file /home/yourusername/GRAM/stdout. That file should contain the value that you specified as the string to be echoed. One minor point is that by default if the file /home/yourusername/GRAM/stdout already exists then the output from running your executable is appended to the current contents of the stdout file. Thus, if your do several runs, the stdout file will contain the output from all those runs.

Step 8 Applying the Techniques

So far we have been asked to follow detailed instructions to achieve a task. In step 8, we apply the concepts learned so far in the assignments and lectures to a new situation. You will need to revisit assignment 2, and you may need to read the lecture slides to help discover how to do the tasks.

Task 1. Write and deploy a new grid service that provides inventory information about items being sold in a store. The web service class is to be called Item. The service has three methods:

· void store(int n) that sets the number of items held to n.

· int remaining() that returns the number of items left in the store.

· void buy(int m) that decrements the number of items held by m (i.e. subtracts m from the number of items).

This service is similar to that in assignment 2 only in a different context, and you can use the code in assignment 2 and modify it accordingly. Check that the service is properly deployed and functioning by using the service browser.

Task 2. For concreteness, suppose an instance of the Item class is being used by Wal-Mart to decide when to order more "widgets" that they sell from their shelves. The instance of Item for widgets is to be called widget and stores the number of widgets currently unsold in the store. Initially, there are 100 widgets. Write a client class called Shopper that represents a shopper who is buying widgets. Arrange that the number of widgets the shopper buys is provided as a command line argument, and the number widgets remaining is redirected from standard output to a file.

Test the client with the deployed service, with a shopper called shopper1 that is buying five widgets using a command line of the form in step 10 of assignment 2:

[yourusername@terra GridServices]$ java -classpath \

./build/classes/:$CLASSPATH …

Task 3. Create a suitable RSL file for shopper. (Use the echo program RSL file as a template.) Then use the managed-job-globusrun command to cause the shopper program to be executed from this command.

Task 4. Now it gets more interesting! Use the managed-job-globusrun command to cause four instances of the shopper program to be executed. (You will need to modify the RSL count parameter to do this.) Print out the output file showing the results of four shoppers each buying widgets.

(Disclaimer -- we have not done Step 8 ourselves yet and there may be missing critical information.)

Step 9: Ending Your Grid Session

When you have completed all of the steps above, you should not just logoff of terra. There are two processes that you started that are still running: the container and the proxy. The container is running in the foreground in its own shell. To kill the container process just select its shell and send the container process a SIGINT signal by pressing ctrl-C (the Ctrl key and the C key simultaneously). That the container process is killed will be indicated by the command prompt for that shell being displayed.

You can kill the proxy process explicitly. However, the proxy process by default only exists for a few hours and then it terminates itself. Thus, killing the proxy process explicitly is not essential. As an aside, it is possible to cause the proxy process to exist for more than a few hours be using a command-line argument to the grid-proxy-init command.

After you have killed the container process you can logoff of terra in both shells.

Appendix A: Additional Resources

The Official Globus Documentation on GRAM for Globus Toolkit 3.2:

http://www-unix.globus.org/toolkit/docs/3.2/gram/ws/index.html
A User’s Perspective on GRAM in Globus Toolkit 3.2:

http://www-106.ibm.com/developerworks/grid/library/gr-factory/?ca=dgr-lnxw961GridMMJFS
10

