Assignment 6
Submitting MPI and MPI-G Jobs

Version 0.1(October 31, 2004)

Written by Barry Wilkinson, …

CS 493: Grid Computing (Fall 2004)

Instructor: Dr. Barry Wilkinson

Overview

The objective of this assignment is to gain some experience in writing and running MPI programs on a single computer, a cluster, and on a grid. In each case, we shall use MPICH-G2 which is an implementation based on MPICH for a grid, although for a single computer and cluster, non-grid enabled MPI implementations could be used. MPICH-G2 uses Globus (2.0 onwards).

Step 1: Preliminaries

The programs in this assignment are written the C language. If you are unfamiliar with C, more information on the language can be found at http://www.cs.wcu.edu/~abw/CS301/, a basic course on C for Engineering students. The control constructs of C are essentially the same as Java. Differences include standard input and output statements. For standard output, printf() is used instead of System.out.print(). The \n characters in the string argument of printf indicate a new line. For standard input, scanf() is used.

Executing MPI programs requires the following:

· Specifying the machines (computers) that you want to use, in a "machines" file

· Compiling source program for the machines that the program is to be executed on using the mpicc command

· Executing the programs using the mpirun command with arguments that include the number of instances of the program (jobs) that you want to do, and the name of executable.

Step 2: Getting Started (WCU).

Logon to your account on venus.cs.wcu.edu (via your account on sol.cs.wcu.edu if necessary). The initial password on venus is globus which you should change. When you log in, your current directory is initially /home/username where username is replaced by your username.
Step 3: Start a Proxy

Start a proxy process using the following command:

[username@venus username]$ grid-proxy-init

You will then be prompted for your pass phrase, which is

globus

Step 3: Creating a suitable directory structure for your programs

For convenience, create a folder called assign5, and run all your commands from this folder.

Step 4: Creating a simple MPI source program.

As the first MPI program, we shall use a simple "hello world" program below:

#include <mpi.h>

#include <stdio.h>

int main(int argc,char *argv[]) {

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

MPI_Comm_size(MPI_COMM_WORLD,&size);

printf("Hello World from process %d of %d\n",rank,size);

MPI_Finalize();

return 0;

}

This program if executed on one computer would simple display:

Hello World from process 0 of 1

(Processes are numbered from zero). If this program was executed on multiple computers, say 4 computers, or on a single computer specifying four processes, one might get:

Hello World from process 3 of 4

Hello World from process 0 of 4

Hello World from process 1 of 4

Hello World from process 2 of 4

The order of the messages is generally indeterminate and will depend upon the time it takes to execute program and send messages.

Create a source file called hello.c containing the program.

Step 5: Compiling the "Hello World" program:

Compilation is done with the MPICH script mpicc, with default configuration to use the gcc compiler, and then takes the same flags and arguments as gcc. Compile the "Hello World" program, hello.c, with:

$GLOBUS_LOCATION/bin/mpicc -o hello hello.c

or simply:

mpicc -o hello hello.c

as mpicc should be in your path. This command creates the executable called hello.

Step 6: Executing the "Hello World" program:

Machines file: The command to execute the MPI program is mpirun. This command requires and used a file called "machines" that contains the names of the computers available to execute the program and the job manager. Typically the default Globus job manager is used and then only the machine name is needed . Create a machines file containing available machines. For WCU, this will be:

"venus.cs.wcu.edu"

"jupiter.cs.wcu.edu"

Create a file called "machines" with these contents. The mpirun command expects the machines file either in a directory specified by a -machinefile flag, the current directory used to execute the mpirun command, or in <MPICH_INSTALL_PATH>/bin/machines ($GLOBUS_LOCATION/bin/machines). Place your machines file in the directory assign5.

Specifying just the machine names is the default situation with one instance of the program being executed on each machine. If one wished to have more than one instance of the program executed on a machine, the number would follow the machine name in the file, i.e.:

"venus.cs.wcu.edu" 4

"jupiter.cs.wcu.edu" 5

if one allocated 4 instances to run on venus and 5 on jupiter. The actual number of instances of the program executed will depend upon the number specified in -np argument in the mpirun command. Jobs will be allocated in a round robin fashion. For example, if 10 "jobs" were specified in the mpirun command, first 4 would run on venus, the next 5 on jupiter, and the remaining one on venus. In our case, we will only ask for one instance (process) on each machine

RSL file: The next task is to specify the details of the job. The job is specified as a Globus RSL file. In MPI-G2, this RSL file is RSL version 1 (not version 2 used in assignment 3 which is a XML schema). Fortunately, the RSL file can be generated from the mpirun command if the command is given a machines file and the program name, and any other needed arguments.

Execute program: Now we are ready to execute the program. Type:

mpirun -np 2 hello

This should execute two instances of the program, one on terra and one on venus (or whichever computers are in your machines file). You should get:

Hello World from process 1 of 2

Hello World from process 0 of 2

(in any order).

Step 7: Adding Communication to Hello World

In this step we will modify the Hello World program to cause the message to be printed only by process 0 in numeric order of process number. Process 1 has to send a message to process 0. The code is below:

#include <mpi.h>

#include <stdio.h>

int main(int argc,char *argv[]) {

int myrank, numprocs;

char greeting[80]; /*message sent from slaves to master*/

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

sprintf(greeting,"Hello World from process %d of %d\n",rank,size);

if (myrank == 0) {/*I am going print out everything */

printf("s\n",greeting); /* print greeting from proc 0 */

for (i = 1; i < numprocs; i++) { /* greetings from other */

MPI_Recv(greeting,sizeof(greeting),MPI_CHAR,i,1,MPI_COMM_WORLD,

 &status);

printf(%s\n", greeting);

}

} else {

MPI_Send(greeting,strlen(greeting)+1,MPI_CHAR,0,1,MPI_COMM_WORLD);

}

MPI_Finalize();

return 0;

}

Repeat steps 5 and 6 to compile and execute this program. The output should be the same as step 6 but in numeric order of process number.

Step 8: Adding Name of the Processor to the Greeting:

MPI_Get_processor_name(char *name, int *resultlen) return name of processor executing code (and length of string). Example:

int namelen;

char procname[MPI_MAX_PROCE
SSOR_NAME];

.

.

MPI_Get_processor_name(procname,&namelen);
One can then to add name in greeting with:

sprintf(greeting,"Hello World from process %d of %d on $s\n", rank, size, procname);

Re-work the hello world program in Step 7 to incorporate the processor name in the greeting and test the program. The output should be:

Hello World from process 0 of 2 on terra.cs.wcu.edu

Hello World from process 1 of 2 on venus.cs.wcu.edu
Step 9: MPI Program to Ping Computers

In this step, we shall use the master-slave structure to send a message from the master process to a slave process and return a message from the slave to the master, measuring the time it take to do that. The code is given below:

#include <mpi.h>

#include <stdio.h>

/* Local functions */

static void master(void);

static void slave(void);

int main(int argc, char **argv){

int myrank;

printf("This is my ping program\n");

MPI_Init(&argc, &argv); /* Initialize MPI */

MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Find out my */

if (myrank == 0) {

master();

} else {

slave();

}

MPI_Finalize(); /* Shut down MPI */

return 0;

}

static void master(void){

int x = 9;

double starttime, endtime;

MPI_Status status;

printf("I am the master -");

 printf("Send me a message when you receive this number %d\n", x);

starttime = MPI_Wtime();

MPI_Send(&x, 1, MPI_INT, 1, 1, MPI_COMM_WORLD);

MPI_Recv(&x, 1, MPI_INT, 1, 1, MPI_COMM_WORLD, &status);

endtime = MPI_Wtime();

printf("I am the master. I got this back %d \n", x);

printf("That took %f seconds\n", endtime - starttime);

}

static void slave(void){

int x;

MPI_Status status;

printf("I am the slave - working\n");

MPI_Recv(&x, 1, MPI_INT, 0, 1, MPI_COMM_WORLD, &status);

printf("I am the slave. I got this %d \n", x);

MPI_Send(&x, 1, MPI_INT, 0, 1, MPI_COMM_WORLD);

}

Compile this program and test it.

Step 10: Writing your own MPI program

[image: image2.wmf]f

(

q

)

f

(

p

)

d

f

(

x

)

x

p

q

a

b

In this step, you are asked to write a MPI program to perform numerical integration using trapezoidal method. In this method, the area under the curve is divided into trapezoidal regions, as shown below:

Then:

[image: image1.wmf](

)

(

)

(

)

÷

ø

ö

ç

è

æ

+

-

+

+

+

+

+

=

+

-

+

+

+

+

+

+

+

+

=

2

)

(

)

)

1

(

(

)

2

(

)

(

2

)

(

2

)

(

)

)

1

(

(

2

)

2

(

)

(

2

)

(

)

(

b

f

n

a

f

a

f

a

f

a

f

b

f

n

a

f

a

f

a

f

a

f

a

f

Area

d

d

d

d

d

d

d

d

d

d

d

K

K

where there are n intervals each of width . The sequential code to implement this method is shown below:

d = (b - a)/n;

area = 0.5 * (f(a) + f(b); /* f returns the value of function */

for (x = a + d; x < b; x = x + d)

area = area + f(x);

area = area * d;

Task 1: First write a complete C program using the trapezoidal method with the function, f(x) = x2 + x3 + x4 + x5. Use a = 0 and b = 1.

Task 2. Rewrite the C program in task 1 to execute as MPI program with N processes. Each process handles one sub-region from "start" to "end":

d = (end - start)/n;

area = 0.5 * (f(start) + f(end);

for (x = start + d; x < end; x = x + d)

area = area + f(x);

area = area * d;

Use a MPI_Broadcast() to broadcast the interval size () to all processes, and an MPI_Reduce() routine to add up the partial sums of each process. The parameters of the MPI_Broadcast() and the MPI_Reduce() routine are gven in the Appendix at the end of the document. Instrument the code so that as to output the time taken.

Appendix

Some MPI routines
The following is a collection of MPI routines that is sufficient for this assignment. The Appendix has been adopted from Wilkinson and Allen [2004].

Preliminaries

int MPI_Init(int *argc, char **argv[])

Actions:

Initializes MPI environment.

Arguments:
*argc

argument from main()

**argv[]
argument from main()

int MPI_Finalize(void)

Actions:

Terminates MPI execution environment.

Arguments:
None.

int MPI_Comm_rank(MPI_Comm comm, int *rank)

Actions:

Determines rank of process in communicator.

Arguments:
comm

communicator

*rank

rank (returned)

int MPI_Comm_size(MPI_Comm comm, int *size)

Actions:

Determines size of group associated with communicator.

Arguments:
comm

communicator

*size

size of group (returned)

double MPI_Wtime(void)

Actions:

Returns elapsed time from some point in past, in seconds.

Arguments:
None.

Point-to-Point Message Passing

MPI defines various datatypes for MPI_Datatype, mostly with corresponding C datatypes, including

MPI_CHAR

signed char

MPI_INT

signed int

MPI_FLOAT

float

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

Actions:

Sends message (blocking).

Arguments:
*buf

send buffer

count

number of entries in buffer

datatype
data type of entries

dest

destination process rank

tag

message tag

comm

communicator

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm, MPI_Status *status)

Actions:

Receives message (blocking).

Arguments:
*buf

receive buffer (loaded)

count

max number of entries in buffer

datatype
data type of entries

source
source process rank

tag

message tag

comm

communicator

*status
status (returned)

In receive routines, MPI_ANY_TAG in tag and MPI_ANY_SOURCE in source matches with anything. The return status is a structure with at least three members:

status -> MPI_SOURCE
rank of source of message

status -> MPI_TAG

tag of source message

status -> MPI_ERROR

potential errors

Group Routines

int MPI_Barrier(MPI_Comm comm)

Actions:

Blocks process until all processes have called it.

Arguments:
comm
communicator

int MPI_Bcast(void *buf, int count, MPI_Datatype datatype, int root, MPI_Comm comm)

Actions:

Broadcasts message from root process to all processes in comm and itself.

Arguments:
*buf

message buffer (loaded)

count

number of entries in buffer

datatype
data type of buffer

root

rank of root

int MPI_Gather(void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

Actions:

Gathers values from group of processes.

Arguments:
*sendbuf

send buffer

sendcount
number of send buffer elements

sendtype

data type of send elements

*recvbuf

receive buffer (loaded)

recvcount
number of elements each receive

recvtype

data type of receive elements

root

rank of receiving process

comm

communicator

int MPI_Scatter(void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

Actions:

Scatters a buffer from root in parts to group of processes.

Arguments:
*sendbuf

send buffer

sendcount
number of elements send, each process

sendtype

data type of elements

*recvbuf

receive buffer (loaded)

recvcount
number of recv buffer elements

recvtype

type of recv elements

root

root process rank

comm

communicator

int MPI_Reduce(void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

Actions:

Combines values on all processes to single value.

Arguments:
*sendbuf
send buffer address

*recvbuf
receive buffer address

count
number of send buffer elements

datatype
data type of send elements

op
reduce operation. Several operations, including

MPI_MAX
Maximum

MPI_MIN
Minimum

MPI_SUM
Sum

MPI_PROD
Product

root
root process rank for result

comm
communicator

Bibliography

Gropp, W., E. Lusk, and A. Skjellum (1999), Using MPI Portable Parallel Programming with the Message-Passing Interface, 2nd ed., MIT Press, Cambridge, Massachusetts.

Gropp, W., E. Lusk, and R. Thakur (1999), Using MPI-2 Advanced Features of the Message-Passing Interface, MIT Press, Cambridge, Massachusetts.

Wilkinson, B, and Allen, M. (2004), Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers, Prentice Hall.

Snir, M., S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra (1998), MPI — The Complete Reference: Volume 1, The MPI Core, MIT Press, Cambridge, Massachusetts.

Gropp, W., S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir, and M. Snir (1998), MPI — The Complete Reference: Volume 2, The MPI-2 Extensions, MIT Press, Cambridge, Massachusetts.

1
1

_1159953755.unknown

